946 resultados para Spectral theory, differential operators, quantum graphs, indefinite operators
Resumo:
We study lepton flavor observables in the Standard Model (SM) extended with all dimension-6 operators which are invariant under the SM gauge group. We calculate the complete one-loop predictions to the radiative lepton decays μ → eγ, τ → μγ and τ → eγ as well as to the closely related anomalous magnetic moments and electric dipole moments of charged leptons, taking into account all dimension-6 operators which can generate lepton flavor violation. Also the 3-body flavor violating charged lepton decays τ ± → μ ± μ + μ −, τ ± → e ± e + e −, τ ± → e ± μ + μ −, τ ± → μ ± e + e −, τ ± → e ∓ μ ± μ ±, τ ± → μ ∓ e ± e ± and μ ± → e ± e + e − and the Z 0 decays Z 0 → ℓ+iℓ−j are considered, taking into account all tree-level contributions.
Resumo:
We show that exotic phases arise in generalized lattice gauge theories known as quantum link models in which classical gauge fields are replaced by quantum operators. While these quantum models with discrete variables have a finite-dimensional Hilbert space per link, the continuous gauge symmetry is still exact. An efficient cluster algorithm is used to study these exotic phases. The (2+1)-d system is confining at zero temperature with a spontaneously broken translation symmetry. A crystalline phase exhibits confinement via multi stranded strings between chargeanti-charge pairs. A phase transition between two distinct confined phases is weakly first order and has an emergent spontaneously broken approximate SO(2) global symmetry. The low-energy physics is described by a (2 + 1)-d RP(1) effective field theory, perturbed by a dangerously irrelevant SO(2) breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. This model is an ideal candidate to be implemented in quantum simulators to study phenomena that are not accessible using Monte Carlo simulations such as the real-time evolution of the confining string and the real-time dynamics of the pseudo-Goldstone boson.
Resumo:
We use quantum link models to construct a quantum simulator for U(N) and SU(N) lattice gauge theories. These models replace Wilson’s classical link variables by quantum link operators, reducing the link Hilbert space to a finite number of dimensions. We show how to embody these quantum link models with fermionic matter with ultracold alkaline-earth atoms using optical lattices. Unlike classical simulations, a quantum simulator does not suffer from sign problems and can thus address the corresponding dynamics in real time. Using exact diagonalization results we show that these systems share qualitative features with QCD, including chiral symmetry breaking and we study the expansion of a chirally restored region in space in real time.
Resumo:
We show that the non-embedded eigenvalues of the Dirac operator on the real line with complex mass and non-Hermitian potential V lie in the disjoint union of two disks, provided that the L1-norm of V is bounded from above by the speed of light times the reduced Planck constant. The result is sharp; moreover, the analogous sharp result for the Schrödinger operator, originally proved by Abramov, Aslanyan and Davies, emerges in the nonrelativistic limit. For massless Dirac operators, the condition on V implies the absence of non-real eigenvalues. Our results are further generalized to potentials with slower decay at infinity. As an application, we determine bounds on resonances and embedded eigenvalues of Dirac operators with Hermitian dilation-analytic potentials.
Resumo:
Among resummation techniques for perturbative QCD in the context of collider and flavor physics, soft-collinear effective theory (SCET) has emerged as both a powerful and versatile tool, having been applied to a large variety of processes, from B-meson decays to jet production at the LHC. This book provides a concise, pedagogical introduction to this technique. It discusses the expansion of Feynman diagrams around the high-energy limit, followed by the explicit construction of the effective Lagrangian - first for a scalar theory, then for QCD. The underlying concepts are illustrated with the quark vector form factor at large momentum transfer, and the formalism is applied to compute soft-gluon resummation and to perform transverse-momentum resummation for the Drell-Yan process utilizing renormalization group evolution in SCET. Finally, the infrared structure of n-point gauge-theory amplitudes is analyzed by relating them to effective-theory operators. This text is suitable for graduate students and non-specialist researchers alike as it requires only basic knowledge of perturbative QCD.
Resumo:
We analyze perturbations of the harmonic oscillator type operators in a Hilbert space H, i.e. of the self-adjoint operator with simple positive eigenvalues μ k satisfying μ k+1 − μ k ≥ Δ > 0. Perturbations are considered in the sense of quadratic forms. Under a local subordination assumption, the eigenvalues of the perturbed operator become eventually simple and the root system contains a Riesz basis.
Resumo:
We propose giving the mathematical concept of the pseudospectrum a central role in quantum mechanics with non-Hermitian operators. We relate pseudospectral properties to quasi-Hermiticity, similarity to self-adjoint operators, and basis properties of eigenfunctions. The abstract results are illustrated by unexpected wild properties of operators familiar from PT -symmetric quantum mechanics.
Resumo:
Cultural entrepreneurship and symbolic management perspectives portray entrepreneurs as skilled cultural operators and often assume them to be capable from the outset to purposefully use ‘cultural resources' in order to motivate resource-holding audiences to support their new ventures. We problematize this premise and develop a model of how entrepreneurs become skilful cultural operators and develop the cultural competences necessary for creating and growing their ventures. The model is grounded in a case study of an entrepreneur who set up shop and sought to acquire resources in a culturally unfamiliar setting. Our model proposes that two adaptive sensemaking processes - approval-driven sensemaking and autonomy-driven sensemaking - jointly facilitate the gradual development of cultural competences. These processes jointly enable entrepreneurs to gain cultural awareness and calibrate their symbolic enactments. Specifically, while approval-driven sensemaking facilitates recognizing cultural resources to symbolically couple a venture's identity claims more tightly with the cultural frames of targeted audiences and gain legitimate distinctiveness, autonomy-driven sensemaking enables recognizing cultural constraints and more effective symbolic decoupling to shield the venture from constraining cultural frames and defend the venture's autonomy and resources. We conclude the paper with a discussion of the theoretical implications of our study for cultural entrepreneurship and symbolic management research.
Resumo:
The paper explains in what sense the GRW matter density theory (GRWm) is a primitive ontology theory of quantum mechanics and why, thus conceived, the standard objections against the GRW formalism do not apply to GRWm. We consider the different options for conceiving the quantum state in GRWm and argue that dispositionalism is the most attractive one.
Resumo:
The conversion between representations of angular momentum in spherical polar and cartesian form is discussed.
Resumo:
Pakistan's knitwear exports had been struggling since the quota phase-out until 2009. A particular feature of Pakistan's garment industry is that hiring more male sewing operators at piece rates. Recently, a few surviving knitwear factories have adopted a strategy of shifting from male piece-rate operators to salaried female operators. In Pakistan, female participation in general workforce is very limited and hiring salaried female operators requires management effort and expertise. However, even in the factories with such management skills, household factors prevent females from working outside because Pakistani culture disrespects women working in factories. Our survey reveals that financial motives compel female household members to work outside their homes and that female operators contribute substantially to their households' finances.
Resumo:
In a recent work the authors have established a relation between the limits of the elements of the diagonals of the Hessenberg matrix D associated with a regular measure, whenever those limits exist, and the coe?cients of the Laurent series expansion of the Riemann mapping ?(z) of the support supp(?), when this is a Jordan arc or a connected nite union of Jordan arcs in the complex plane C. We extend here this result using asymptotic Toeplitz operator properties of the Hessenberg matriz.
Resumo:
Automatic segmentation and tracking of the coronary artery tree from Cardiac Multislice-CT images is an important goal to improve the diagnosis and treatment of coronary artery disease. This paper presents a semi-automatic algorithm (one input point per vessel) based on morphological grayscale local reconstructions in 3D images devoted to the extraction of the coronary artery tree. The algorithm has been evaluated in the framework of the Coronary Artery Tracking Challenge 2008 [1], obtaining consistent results in overlapping measurements (a mean of 70% of the vessel well tracked). Poor results in accuracy measurements suggest that future work should refine the centerline extraction. The algorithm can be efficiently implemented and its general strategy can be easily extrapolated to a completely automated centerline extraction or to a user interactive vessel extraction