939 resultados para Solubility isotherm
Resumo:
The aim of this Master’s thesis was to review some methods that are already being utilized in a field of mine water purification and to find and study possible new methods and chemicals for mine water purification by precipitation. The target was also to list the optimal process conditions for these precipitating chemicals. Separation methods were reviewed for several anions and cations, but being a real topical issue, sulphate removal was selected to be in the main focus. Sulphate salts e.g. Na2SO4 are relatively soluble in water, which makes the separation processes difficult. Eutectic freeze crystallization was studied more closely in laboratory tests for sodium sulphate removal. Gravimetric solubility tests were made for three cases of mixed electrolyte solutions: Na2SO4 – NaOH, BaSO4 – NaOH and Na3PO4 – NaOH. The aim of these experiments was to study the effect of NaOH addition on solubility of the studied salt. These phenomena were however noticed to be difficult to see in the used laboratory tests. Thus mathematical modelling was utilized to contribute the laboratory experiments and to bring additional information of the influence of NaOH presence on solubility of selected electrolytes, Na2SO4 and Na3PO4. The results from mathematical modelling of activity coefficients suggest Na2SO4 and Na3PO4 to be precipitated rather with presence and with higher concentrations of NaOH, since the raise of NaOH concentration decreases the solubility of these electrolytes in water.
Resumo:
Asymmetric synthesis using modified heterogeneous catalysts has gained lots of interest in the production of optically pure chemicals, such as pharmaceuticals, nutraceuticals, fragrances and agrochemicals. Heterogeneous modified catalysts capable of inducing high enantioselectivities are preferred in industrial scale due to their superior separation and handling properties. The topic has been intensively investigated both in industry and academia. The enantioselective hydrogenation of ethyl benzoylformate (EBF) to (R)-ethyl mandelate over (-)-cinchonidine (CD)-modified Pt/Al2O3 catalyst in a laboratory-scale semi-batch reactor was studied as a function of modifier concentration, reaction temperature, stirring rate and catalyst particle size. The main product was always (R)-ethyl mandelate while small amounts of (S)-ethyl mandelate were obtained as by product. The kinetic results showed higher enantioselectivity and lower initial rates approaching asymptotically to a constant value as the amount of modifier was increased. Additionally, catalyst deactivation due to presence of impurities in the feed was prominent in some cases; therefore activated carbon was used as a cleaning agent of the raw material to remove impurities prior to catalyst addition. Detailed characterizations methods (SEM, EDX, TPR, BET, chemisorption, particle size distribution) of the catalysts were carried out. Solvent effects were also studied in the semi-batch reactor. Solvents with dielectric constant (e) between 2 and 25 were applied. The enantiomeric excess (ee) increased with an increase of the dielectric coefficient up to a maximum followed by a nonlinear decrease. A kinetic model was proposed for the enantioselectivity dependence on the dielectric constant based on the Kirkwood treatment. The non-linear dependence of ee on (e) successfully described the variation of ee in different solvents. Systematic kinetic experiments were carried out in the semi-batch reactor. Toluene was used as a solvent. Based on these results, a kinetic model based on the assumption of different number of sites was developed. Density functional theory calculations were applied to study the energetics of the EBF adsorption on pure Pt(1 1 1). The hydrogenation rate constants were determined along with the adsorption parameters by non-linear regression analysis. A comparison between the model and the experimental data revealed a very good correspondence. Transient experiments in a fixed-bed reactor were also carried out in this work. The results demonstrated that continuous enantioselective hydrogenation of EBF in hexane/2-propanol 90/10 (v/v) is possible and that continuous feeding of (-)-cinchonidine is needed to maintain a high steady-state enantioselectivity. The catalyst showed a good stability and high enantioselectivity was achieved in the fixed-bed reactor. Chromatographic separation of (R)- and (S)-ethyl mandelate originating from the continuous reactor was investigated. A commercial column filled with a chiral resin was chosen as a perspective preparative-scale adsorbent. Since the adsorption equilibrium isotherms were linear within the entire investigated range of concentrations, they were determined by pulse experiments for the isomers present in a post-reaction mixture. Breakthrough curves were measured and described successfully by the dispersive plug flow model with a linear driving force approximation. The focus of this research project was the development of a new integrated production concept of optically active chemicals by combining heterogeneous catalysis and chromatographic separation technology. The proposed work is fundamental research in advanced process technology aiming to improve efficiency and enable clean and environmentally benign production of enantiomeric pure chemicals.
Resumo:
Two experiments were carried out to evaluate soil persistence of chlorimuron-ethyl and metsulfuron-methyl and phytotoxicity to corn seeded as a succeeding crop. One experiment was conducted with chlorimuron-ethyl applied at 20 g ha-1, and one with metsulfuron-methyl applied at 3.96 g ha-1. Treatments were arranged in a factorial design with two types of soil (sandy and clay), three irrigation regimes (daily, weekly and no irrigation) and four application timings (90, 60 and 30 days before corn seeding, as well as untreated plots). Soil persistence of the herbicides was influenced by water availability, molecule water solubility (leaching potential) and application timings prior to corn seeding. In sandy soil, with adequate water availability, leaching probably had the greatest influence, reducing the persistence of the products, and consequently allowing less time between product application and corn seeding. In clay soil, microbial degradation was probably more important, because it was assumed that the lesser time available for microorganism activity, the lesser the damage was observed for corn, as long as the crop had enough water availability. Metsulfuron-methyl was the least phytotoxic herbicide, possibly as a result of the properties of its molecule and its higher leaching potential.
Resumo:
Diplomityössä perehdytään Hartwall Lahden tuotantolaitoksen juomanvalmistuksen osaston siiderin ja long drink –juomien valmistusprosessin kehittämiseen. Diplomityön tavoitteena oli löytää prosessin ongelma- ja poikkeamakohtia, tutkia mahdollisia hävikkikohteita ja suorittaa laadun osalta ajoseurantamittauksia. Ongelmakohtien pohjalta laadittiin parannusehdotuksia ja niitä toteutettiin jo tämän projektin aikana. Ongelma- ja poikkeamakohtia tutkittiin ajoprosessin aikana. Hävikkitutkimus kohdennettiin aromiliuoksen annostelulinjaan, nestesokerin an-nostelulinjaan ja tuotteiden alku- ja lopputyönnöille painetankkeihin. Painetankkien osalta mahdollisia hävikkikohteita tutkittiin kokeellisen toiminnan avulla ajo-prosessin aikana. Ajoprosessin käynnistyksen jälkeen selvitettiin milloin valmis tuote on painetankkien venttiilimatriisilla. Uudet parametrit alku- ja lopputyönnöille määritettiin tuoteputken, painetankkien pohjaputkien ja venttiilimatriisin tilavuuksien avulla. Hävikkitutkimuksen tuloksena saatiin pienennettyä hävikkiä ja näin ollen syntyi kustannussäästöjä. Hiilidioksidin sitoutuvuutta tutkittiin mittauksien avulla valmistusprosessin aikana. Mittauksien perusteella havaittiin, että hiilidioksidipitoisuus laskee painetankissa. Tämä johtuu valmiin tuotteen lämpötilamuutoksista. Tuotteen lämpötilaa voidaan tasata esimerkiksi levylämmönvaihtimen avulla.
Resumo:
In the framework of the biorefinery concept researchers aspire to optimize the utilization of plant materials, such as agricultural wastes and wood. For most of the known processes, the first steps in the valorisation of biomass are the extraction and purification of the individual components. The obtained raw products by means of a controlled separation can consecutively be modified to result in biofuels or biogas for energy production, but also in value-added products such as additives and important building blocks for the chemical and material industries. Considerable efforts are undertaken in order to substitute the use of oil-based starting materials or at least minimize their processing for the production of everyday goods. Wood is one of the raw materials, which have gained large attention in the last decades and its composition has been studied in detail. Nowadays, the extraction of water-soluble hemicelluloses from wood is well known and so for example xylan can be obtained from hardwoods and O-acetyl galactoglucomannans (GGMs) from softwoods. The aim of this work was to develop water-soluble amphiphilic materials of GGM and to assess their potential use as additives. Furthermore, GGM was also applied as a crosslinker in the synthesis of functional hydrogels for the removal of toxic metals and metalloid ions from aqueous solutions. The distinguished products were obtained by several chemical approaches and analysed by nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FTIR), size exclusion chromatography (SEC), thermal gravimetric analysis (TGA), scanning electron microscope SEM, among others. Bio-based surfactants were produced by applying GGM and different fatty acids as starting materials. On one hand, GGM-grafted-fatty acids were prepared by esterification and on the other hand, well-defined GGM-block-fatty acid derivatives were obtained by linking amino-functional fatty acids to the reducing end of GGM. The reaction conditions for the syntheses were optimized and the resultant amphiphilic GGM derivatives were evaluated concerning their ability to reduce the surface tension of water as surfactants. Furthermore, the block-structured derivatives were tested in respect to their applicability as additives for the surface modification of cellulosic materials. Besides the GGM surfactants with a bio-based hydrophilic and a bio-based hydrophobic part, also GGM block-structured derivatives with a synthetic hydrophobic tail, consisting of a polydimethylsiloxane chain, were prepared and assessed for the hydrophobization of surface of nanofibrillated cellulose films. In order to generate GGM block-structured derivatives containing a synthetic tail with distinguished physical and chemical properties, as well as a tailored chain length, a controlled polymerization method was used. Therefore, firstly an initiator group was introduced at the reducing end of the GGM and consecutively single electron transfer-living radical polymerization (SET-LRP) was performed by applying three different monomers in individual reactions. For the accomplishment of the synthesis and the analysis of the products, challenges related to the solubility of the reactants had to be overcome. Overall, a synthesis route for the production of GGM block-copolymers bearing different synthetic polymer chains was developed and several derivatives were obtained. Moreover, GGM with different molar masses were, after modification, used as a crosslinker in the synthesis of functional hydrogels. Hereby, a cationic monomer was used during the free radical polymerization and the resultant hydrogels were successfully tested for the removal of chromium and arsenic ions from aqueous solutions. The hydrogel synthesis was tailored and materials with distinguished physical properties, such as the swelling rate, were obtained after purification. The results generated in this work underline the potential of bio-based products and the urge to continue carrying out research in order to be able to use more green chemicals for the manufacturing of biorenewable and biodegradable daily products.
Resumo:
In recent decades, industrial activity growth and increasing water usage worldwide have led to the release of various pollutants, such as toxic heavy metals and nutrients, into the aquatic environment. Modified nanocellulose and microcellulose-based adsorption materials have the potential to remove these contaminants from aqueous solutions. The present research consisted of the preparation of five different nano/microcellulose-based adsorbents, their characterization, the study of adsorption kinetics and isotherms, the determination of adsorption mechanisms, and an evaluation of adsorbents’ regeneration properties. The same well known reactions and modification methods that were used for modifying conventional cellulose also worked for microfibrillated cellulose (MFC). The use of succinic anhydride modified mercerized nanocellulose, and aminosilane and hydroxyapatite modified nanostructured MFC for the removal of heavy metals from aqueous solutions exhibited promising results. Aminosilane, epoxy and hydroxyapatite modified MFC could be used as a promising alternative for H2S removal from aqueous solutions. In addition, new knowledge about the adsorption properties of carbonated hydroxyapatite modified MFC as multifunctional adsorbent for the removal of both cations and anions ions from water was obtained. The maghemite nanoparticles (Fe3O4) modified MFC was found to be a highly promising adsorbent for the removal of As(V) from aqueous solutions due to its magnetic properties, high surface area, and high adsorption capacity . The maximum removal efficiencies of each adsorbent were studied in batch mode. The results of adsorption kinetics indicated very fast removal rates for all the studied pollutants. Modeling of adsorption isotherms and adsorption kinetics using various theoretical models provided information about the adsorbent’s surface properties and the adsorption mechanisms. This knowledge is important for instance, in designing water treatment units/plants. Furthermore, the correspondence between the theory behind the model and properties of the adsorbent as well as adsorption mechanisms were also discussed. On the whole, both the experimental results and theoretical considerations supported the potential applicability of the studied nano/microcellulose-based adsorbents in water treatment applications.
Resumo:
In recent years, there have been studies that show a correlation between the hyperactivity of children and use of artificial food additives, including colorants. This has, in part, led to preference of natural products over products with artificial additives. Consumers have also become more aware of health issues. Natural food colorants have many bioactive functions, mainly vitamin A activity of carotenoids and antioxidativity, and therefore they could be more easily accepted by the consumers. However, natural colorant compounds are usually unstable, which restricts their usage. Microencapsulation could be one way to enhance the stability of natural colorant compounds and thus enable better usage for them as food colorants. Microencapsulation is a term used for processes in which the active material is totally enveloped in a coating or capsule, and thus it is separated and protected from the surrounding environment. In addition to protection by the capsule, microencapsulation can also be used to modify solubility and other properties of the encapsulated material, for example, to incorporate fat-soluble compounds into aqueous matrices. The aim of this thesis work was to study the stability of two natural pigments, lutein (carotenoid) and betanin (betalain), and to determine possible ways to enhance their stability with different microencapsulation techniques. Another aim was the extraction of pigments without the use of organic solvents and the development of previously used extraction methods. Stability of pigments in microencapsulated pigment preparations and model foods containing these were studied by measuring the pigment content after storage in different conditions. Preliminary studies on the bioavailability of microencapsulated pigments and sensory evaluation for consumer acceptance of model foods containing microencapsulated pigments were also carried out. Enzyme-assisted oil extraction was used to extract lutein from marigold (Tagetes erecta) flower without organic solvents, and the yield was comparable to solvent extraction of lutein from the same flowers. The effects of temperature, extraction time, and beet:water ratio on extraction efficiency of betanin from red beet (Beta vulgaris) were studied and the optimal conditions for maximum yield and maximum betanin concentration were determined. In both cases, extraction at 40 °C was better than extraction at 80 °C and the extraction for five minutes was as efficient as 15 or 30 minutes. For maximum betanin yield, the beet:water ratio of 1:2 was better, with possibly repeated extraction, but for maximum betanin concentration, a ratio of 1:1 was better. Lutein was incorporated into oil-in-water (o/w) emulsions with a polar oil fraction from oat (Avena sativa) as an emulsifier and mixtures of guar gum and xanthan gum or locust bean gum and xanthan gum as stabilizers to retard creaming. The stability of lutein in these emulsions was quite good, with 77 to 91 percent of lutein being left after storage in the dark at 20 to 22°C for 10 weeks whereas in spray dried emulsions the retention of lutein was 67 to 75 percent. The retention of lutein in oil was also good at 85 percent. Betanin was incorporated into the inner w1 water phase of a water1-in-oil-inwater2 (w1/o/w2) double emulsion with primary w1/o emulsion droplet size of 0.34 μm and secondary w1/o/w2 emulsion droplet size of 5.5 μm and encapsulation efficiency of betanin of 89 percent. In vitro intestinal lipid digestion was performed on the double emulsion, and during the first two hours, coalescence of the inner water phase droplets was observed, and the sizes of the double emulsion droplets increased quickly because of aggregation. This period also corresponded to gradual release of betanin, with a final release of 35 percent. The double emulsion structure was retained throughout the three-hour experiment. Betanin was also spray dried and incorporated into model juices with different pH and dry matter content. Model juices were stored in the dark at -20, 4, 20–24 or 60 °C (accelerated test) for several months. Betanin degraded quite rapidly in all of the samples and higher temperature and a lower pH accelerated degradation. Stability of betanin was much better in the spray dried powder, with practically no degradation during six months of storage in the dark at 20 to 24 °C and good stability also for six months in the dark at 60 °C with 60 percent retention. Consumer acceptance of model juices colored with spray dried betanin was compared with similar model juices colored with anthocyanins or beet extract. Consumers preferred beet extract and anthocyanin colored model juices over juices colored with spray dried betanin. However, spray dried betanin did not impart any off-odors or off-flavors into the model juices contrary to the beet extract. In conclusion, this thesis describes novel solvent-free extraction and encapsulation processes for lutein and betanin from plant sources. Lutein showed good stability in oil and in o/w emulsions, but slightly inferior in spray dried emulsions. In vitro intestinal lipid digestion showed a good stability of w1/o/w2 double emulsion and quite high retention of betanin during digestion. Consumer acceptance of model juices colored with spray dried betanin was not as good as model juices colored with anthocyanins, but addition of betanin to real berry juice could produce better results with mixture of added betanin and natural berry anthocyanins could produce a more acceptable color. Overall, further studies are needed to obtain natural colorants with good stability for the use in food products.
Resumo:
Different nitrogen oxide removal technologies for rotary lime kiln are studied in this thesis, the main focus being in commercial technologies. Post-combustion methods are investigated in more detail as potential possible NOx removal with combustion methods in rotary lime kiln is more limited or primary methods are already in use. However, secondary methods as NOx scrubber, SNCR or SCR technologies are not listed as the Best Available Technologies defined by European Union. BAT technologies for NOx removal in lime kiln are (1) Optimised combustion and combustion control, (2) Good mixing of fuel and air, (3) Low-NOx burner and (4) Fuel selection/low-N fuel. SNCR method is the most suitable technique for NOx removal in lime kiln when NOx removal from 50 % to 70 % is required in case primary methods are already in use or cannot be applied. In higher removal cases ammonia slip is an issue in SNCR. By using SCR better NOx reduction can be achieved but issues with catalyst materials are expected to arise because of the dust and sulphur dioxide which leads to catalyst poison formation in lower flue gas temperatures. NOx scrubbing has potential when simultaneous NOx and SO2 removal is required. The challenge is that NO cannot be scrubbed directly, but once it is oxidized to NO2 or further scrubbing can be performed as the solubility of NO2 is higher. Commercial installations have not been made regarding SNCR, SCR or NOx scrubbing regarding rotary lime kiln. For SNCR and SCR the closest references come from cement industry.
Resumo:
Työssä tutkittiin kirjallisuuden ja laboratoriomittausten avulla vaihtoehtoja kullan pelkistämiseen ja talteenottoon kultauuton takaisinuuttoliuoksista. Tavoitteena oli löytää menetelmä, jolla saadaan puhdasta kiinteää lopputuotetta ilman kullan häviöitä. Käytettyjä pelkistimiä olivat D-(+)-glukoosi, natriumboorihydridi, L-askorbiinihappo, D-(-)-isoaskorbiinihappo ja aktiivihiili. Laboratoriokokeiden perusteella D-(-)-isoaskorbiinihappo sekä aktiivihiili olivat sopivimmat pelkistimet kokeissa käytetylle kultaliuokselle. Isoaskorbiinihapolla suoritettiin panoskokeita lasireaktorissa eri alku-pH:ssa sekä erilaisilla pelkistimen ja kullan moolisuhteilla. Tulosten perusteella havaittiin pH:n ja pelkistimen ylimäärän vaikuttavan merkittävästi lopputuotteen puhtauteen. Myös redox-potentiaalia säätämällä ja happopesulla pelkistyksen jälkeen voidaan vaikuttaa lopputuotteen puhtauteen. Aktiivihiilellä suoritettiin panoskokeita adsorptiotasapainojen (latausisotermi) ja kinetiikan tutkimiseksi. Hiileen on mahdollista saada kultaa 383 mg/g kuivaa hiiltä. Suurempi lataus voitaisiin saavuttaa käyttämällä hiiltä, jolla on pienempi partikkelikoko. Kolonnikokeita tehtiin eri virtausnopeuksilla. Kolonnikokeissa kullan dynaaminen adsorptiokapasiteetti hiileen odotetusti kasvoi virtausnopeuden laskiessa. Pienin käytetty virtausnopeus oli 2,40 BV/h, jolloin kapasiteetti oli 75,4 mg/g kuivaa hiiltä (c (Au feed) = 129 mg/L). Kullasta voidaan poistaa myös kolonnipelkistyksen jälkeen epäpuhtauksia happopesulla. Isoaskorbiinihapolla pelkistyksen kinetiikka on nopea ja sillä saatiin pelkistettyä puhdasta lopputuotetta. Sekä isoaskorbiinihappo, että aktiivihiili ovat potentiaalisia menetelmiä kullan talteenottoon.
Resumo:
Synthetic dyes bind to proteins causing selective coprecipitation of the complexes in acid aqueous solution by a process of reversible denaturation that can be used as an alternative method for protein fractionation. The events that occur before precipitation were investigated by equilibrium dialysis using bovine trypsin and flavianic acid as a model able to cause coprecipitation. A two-step mode of interaction was found to be dependent on the incubation periods allowed for binding, with pronounced binding occurring after 42 h of incubation. The first step seems to involve hydration effects and conformational changes induced by binding of the first dye molecule, following rapid denaturation due to the binding of six additional flavianate anions to the macromolecule.
Resumo:
Changes in the structural and functional properties of collagen caused by advanced glycation might be of importance for the etiology of late complications in diabetes. The present study was undertaken to investigate the influence of oral administration of aqueous pod extract (200 mg/kg body weight) of Phaseolus vulgaris, an indigenous plant used in Ayurvedic Medicine in India, on collagen content and characteristics in the tail tendon of streptozotocin-diabetic rats. In diabetic rats, collagen content (117.01 ± 6.84 mg/100 mg tissue) as well as its degree of cross-linking was increased, as shown by increased extent of glycation (21.70 ± 0.90 µg glucose/mg collagen), collagen-linked fluorescence (52.8 ± 3.0 AU/µmol hydroxyproline), shrinkage temperature (71.50 ± 2.50ºC) and decreased acid (1.878 ± 0.062 mg hydroxyproline/100 mg tissue) and pepsin solubility (1.77 ± 0.080 mg hydroxyproline/100 mg tissue). The alpha/ß ratio of acid- (1.69) and pepsin-soluble (2.00) collagen was significantly decreased in streptozotocin-diabetic rats. Administration of P. vulgaris for 45 days to streptozotocin-diabetic rats significantly reduced the accumulation and cross-linking of collagen. The effect of P. vulgaris was compared with that of glibenclamide, a reference drug administered to streptozotocin-diabetic rats at the dose of 600 µg/kg body weight for 45 days by gavage. The effects of P. vulgaris (collagen content, 64.18 ± 1.97; extent of glycation, 12.00 ± 0.53; collagen-linked fluorescence, 33.6 ± 1.9; shrinkage temperature, 57.0 ± 1.0; extent of cross-linking - acid-soluble collagen, 2.572 ± 0.080, and pepsin-soluble collagen, 2.28 ± 0.112) were comparable with those of glibenclamide (collagen content, 71.5 ± 2.04; extent of glycation, 13.00 ± 0.60; collagen-linked fluorescence, 38.9 ± 2.0; shrinkage temperature, 59.0 ± 1.5; extent of cross-linking - acid-soluble collagen, 2.463 ± 0.078, and pepsin-soluble collagen, 2.17 ± 0.104). In conclusion, administration of P. vulgaris pods had a positive influence on the content of collagen and its properties in streptozotocin-diabetic rats.
Resumo:
Two variants (A and B) of the widely employed Walker 256 rat tumor cells are known. When inoculated sc, the A variant produces solid, invasive, highly metastasizing tumors that cause severe systemic effects and death. We have obtained a regressive variant (AR) whose sc growth is slower, resulting in 70-80% regression followed by development of immunity against A and AR variants. Simultaneously with the beginning of tumor regression, a temporary anemia developed (~8 days duration), accompanied by marked splenomegaly (~300%) and changes in red blood cell osmotic fragility, with mean corpuscular fragility increasing from 4.1 to 6.5 g/l NaCl. The possibility was raised that plasma factors associated with the immune response induced these changes. In the present study, we identify and compare the osmotic fragility increasing activity of plasma fractions obtained from A and AR tumor bearers at different stages of tumor development. The results showed that by day 4 compounds precipitating in 60% (NH4)2SO4 and able to increase red blood cell osmotic fragility appeared in the plasma of A and AR tumor bearers. Later, these compounds disappeared from the plasma of A tumor bearers but slightly increased in the plasma of AR tumor bearers. Furthermore, by day 10, compounds precipitating between 60 and 80% (NH4)2SO4 and with similar effects appeared only in plasma of AR tumor bearers. The salt solubility, production kinetics and hemolytic activity of these compounds resemble those of the immunoglobulins. This, together with their preferential increase in rats bearing the AR variant, suggest their association with an immune response against this tumor.
Resumo:
Dissolving cellulose is the first main step in preparing novel cellulosicmaterials. Since cellulosic fibres cannot be easily dissolved in water-based solvents, fibres were pretreated with ethanol-acid solution prior to the dissolution. Solubility and changes on the surface of the fibres were studied with microscopy and capillary viscometry. After the treatment, the cellulose fibres were soluble in alkaline urea-water solvent. The nature of this viscous solution was studied rheologically. Cellulose microspheres were prepared by extruding the alkaline cellulose solution through the needle into an acidic medium. By altering the temperature and acidity of the mediumit was possible to adjust the specific surface area and pore sizes of themicrospheres. A typical skin-core structure was found in all samples. Microspheres were oxidised in order to introduce anionic carboxylic acid groups (AGs). Anionic microspheres are more hydrophilic; their water-uptake increased 25 times after oxidation and they could swell almost to their original state (88%) after drying and shrinking. Swelling was studied in simulated physiological environments, corresponding to stomach acid and intestines (pH 1.2-7.4). Oxidised microspheres were used as a drug carriers. They demonstrated a highmass uniformity, which would enable their use for personalised dosing among different patients, including children. The drug was solidified in microspheres in amorphous form. This enhanced solubility and could be used for more challenging drugs with poor solubility. The pores of themicrospheres also remained open after the drug was loaded and they were dried. Regardless of the swelling, the drug was released at a constant rate in all environments.
Resumo:
Tutkimuksen tarkoituksena oli kartoittaa lämpötilan vaikutusta veden orgaanisten haitta-aineiden hapetuksessa PCD-menetelmällä. Kokeita tehtiin näytteiden eri alkulämpötiloilla. Malliyhdisteenä kokeissa käytettiin oksaalihappoa. Teoriaosuudessa käsiteltiin pulssittaista koronapurkausta ilmiönä. Lisäksi tarkasteltiin, kuinka PCD-menetelmällä muodostuu hapettimia neste-kaasufaasissa. Syntyvistä hapettimista keskityttiin otsoniin ja hydroksyyliradikaaliin. Kokeellisessa osuudessa esiteltiin käytetty PCD-laitteisto. Esittelyn jälkeen siirryttiin hapetuskokeiden kuvaamiseen ja analyysin suorittamiseen titrauksella. Lopuksi koottiin tulokset. Tutkimuksissa prosessin hapetustehon havaittiin heikentyvän lämpötilan noustessa tutkitulla lämpötila-alueella, mikä voi selittyä kaasufaasissa muodostuvan otsonin heikentyvällä liukoisuudella. Tuloksia voidaan pitää viitteellisinä, ja selkeän mallin muodostamiseksi tarvitaan jatkotutkimuksia laajemmalla lämpötila-alueella tarkasti toistettavilla koejärjestelyillä.
Resumo:
The objectives of this work were synthesizing an EDTA-β-CD adsorbent and investigating its adsorption potential and applications in preconcentration of REEs from aqueous phase. The adsorption capacity of EDTA-β-CD was investigated. The adsorption studies were performed by batch techniques both in one- and multi-component systems. The effects of pH, contact time and initial concentration were evaluated. The analytical detection methods and characterization methods were presented. EDTA-β-CD adsorbent was synthesized successfully with high EDTA coverage. The maximum REEs uptake was 0.310 mmol g-1 for La(III), 0.337 mmol g-1 for Ce(III) and 0.353 mmol g-1 for Eu(III), respectively. The kinetics of REEs onto EDTA-β-CD fitted well to pseudo-second-order model and the adsorption rate was affected by intra-particle diffusion. The experimental data of one component studies fitted to Langmuir isotherm model indicating the homogeneous surface of the adsorbent. The extended Sips model was applicable for the isotherm studies in three-component system. The electrostatic interaction, chelation and complexation were all involved in the adsorption mechanism. The preconcentration of RE ions and regeneration of EDTA-β-CD were successful. Overall, EDTA-β-CD is an effective adsorbent in adsorption and preconcentration of REEs.