957 resultados para Smooth interfaces


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Missense mutations in smooth muscle cell (SMC) specific ACTA2 (á-actin) and MYH11 (â-myosin heavy chain) cause diffuse and diverse vascular diseases, including thoracic aortic aneurysms and dissections (TAAD) and early onset coronary artery disease and stroke. The mechanism by which these mutations lead to dilatation of some arteries but occlusion of others is unknown. We hypothesized that the mutations act through two distinct mechanisms to cause varied vascular diseases: a loss of function, leading to decreased SMC contraction and aneurysms, and a gain of function, leading to increased SMC proliferation and occlusive disease. To test this hypothesis, ACTA2 mutant SMCs and myofibroblasts were assessed and found to not form á-actin filaments whereas control cells did, suggesting a dominant negative effect of ACTA2 mutations on filament formation. A loss of á-actin filaments would be predicted to cause decreased SMC contractility. Histological examination of vascular tissues from patients revealed SMC hyperplasia leading to arterial stenosis and occlusion, supporting a gain of function associated with the mutant gene. Furthermore, ACTA2 mutant SMCs and myofibroblasts proliferated more rapidly in static culture than control cells (p<0.05). We also determined that Acta2-/- mice have ascending aortic aneurysms. Histological examination revealed aortic medial SMC hyperplasia, but minimal features of medial degeneration. Acta2-/- SMCs proliferated more rapidly in culture than wildtype (p<0.05), and microarray analysis of Acta2-/- SMCs revealed increased expression of Actg2, 15 collagen genes, and multiple focal adhesion genes. Acta2-/- SMCs showed altered localization of vinculin and zyxin and increased phosphorylated focal adhesion kinase (FAK) in focal adhesions. A specific FAK inhibitor decreased Acta2-/- SMC proliferation to levels equal to wildtype SMCs (p<0.05), suggesting that FAK activation leads to the increased proliferation. We have described a unique pathology associated with ACTA2 and MYH11 mutations, as well as an aneurysm phenotype in Acta2-/- mice. Additionally, we identified a novel pathogenic pathway for vascular occlusive disease due to loss of SMC contractile filaments, alterations in focal adhesions, and activation of FAK signaling in SMCs with ACTA2 mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study the challenge of analyzing complex micro X-ray diffraction (microXRD) patterns from cement–clay interfaces has been addressed. In order to extract the maximum information concerning both the spatial distribution and the crystal structure type associated with each of the many diffracting grains in heterogeneous, polycrystalline samples, an approach has been developed in which microXRD was applied to thin sections which were rotated in the X-ray beam. The data analysis, performed on microXRD patterns collected from a filled vein of a cement–clay interface from the natural analogue in Maqarin (Jordan), and a sample from a two-year-old altered interface between cement and argillaceous rock, demonstrate the potential of this method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epstein-Barr virus (EBV) - associated smooth muscle tumors (EBV-SMT) are a rare, recently recognized distinct group of mesenchymal tumors that develop exclusively in patients with immunosuppression. It is believed that tumorigenesis is, at least in part, through the activation of the Akt/mammalian target of rapamycin (mTOR) signal pathway. We describe the clinicopathologic and immunohistochemical features of a multifocal hepatic EBV-SMT in a 34-year-old acquired immunodeficiency syndrome (AIDS) patient and investigate the activation status of the mTOR signal pathway in this tumor. In addition, we provide a review of the literature on the clinicopathologic findings of hepatic EBV-SMT in adult AIDS patients, and discuss their biologies and possible therapeutic strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the clinical success of left ventricular assist devices (LVADs) used for short term "bridge to transplant" and the limited availability of donor organs, heart assist devices are being considered for long term implantation as an alternative to heart transplantation. In an effort to improve biocompatibility, a nonthrombogenic cellular lining was developed from genetically engineered smooth muscle cells (GE-SMC) for the Thermocardiosystems Heartmate$\sp{\rm TM}$ LVAD. SMCs have been transduced with the genes for endothelial nitric oxide synthase (NOS III) and GTP cyclohydrolase (GTPCH) with subsequent stable expression of the NOS III protein via an Epstein Barr based DNA expression vector. Transduced SMCs produce nitric oxide at concentrations that reduce platelet deposition and smooth muscle cell proliferation when tested in vitro. In addition, the adhesive capabilities of GE-SMC linings were also examined, and optimized in physical environments mimicking typical in vivo LVAD operation. Preliminary investigations examining cell adhesion during constant shear stress exposure demonstrated an acute phase of cell loss corresponding to cytoskeletal F-actin rearrangement. Subsequently, an in vitro circulatory loop was designed to expose cell lined LVADs to in vivo operating conditions. Cumulative cell loss from cell lined LVADs was less than 10% after 24 hours of flow. Using a protocol for "preconditioning" the cell lining within the mock circulatory loop, the first implantation of an LVAD containing a genetically engineered SMC lining was successfully implemented in a bovine model. Results from this 24 hour study indicate that the flow-conditioned cellular lining remained intact with no evidence of thromboembolization and only minimal changes in coagulation studies. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A heterodimeric 760-kDa dermatan sulphate proteoglycan tentatively named PG-760 was characterized as a product of keratinocytes, endothelial cells, and fibroblasts. The two core proteins of 460 kDa and 300 kDa are linked by disulphide bridges, and both carry one or only very few dermatan sulphate chains. Different antisera against PG-760 were used in the present study to investigate the distribution in selected murine tissues by light and electron microscopy. PG-760 immunostaining was observed in cornea (epithelium including basement membrane, stroma, and Descemet's membrane), skin, mucosa of the small intestine, Engelbreth-Holm-Swarm (EHS)-tumour (matrix and cells), and the smooth muscle layers of uterus, small intestine, and blood vessels. No staining was observed in capillaries, striated muscles, and liver parenchyma including the central vein. The expression of PG-760 in EHS-tumour was also demonstrated after extraction with 4 M guanidine and partial purification by diethylaminoethyl (DEAE)-chromatography. We conclude that this novel proteoglycan exhibits a unique tissue distribution being a constituent of some but not all basement membranes, of some other extracellular matrices, and additionally, of all investigated smooth muscle layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quantum dimer model on the square lattice is a U(1) gauge theory that addresses aspects of the physics of high-Tc superconductors. Using a quantum Monte Carlo method, we show that the theory exists in a confining columnar valence bond solid phase. The interfaces separating distinct columnar phases display plaquette order, which, however, is not realized as a bulk phase. Static “electric” charges are confined by flux tubes that consist of multiple strands, each carrying a fractionalized flux ¼. A soft pseudo-Goldstone mode (which becomes exactly massless at the Rokhsar-Kivelson point) extends deep into the columnar phase, with potential implications for high-Tc physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to evaluate the effectiveness of fluorescence-based methods (DIAGNOdent, LF; DIAGNOdent pen, LFpen, and VistaProof fluorescence camera, FC) in detecting demineralization and remineralization on smooth surfaces in situ. Ten volunteers wore acrylic palatal appliances, each containing 6 enamel blocks that were demineralized for 14 days by exposure to a 20% sucrose solution and 3 of them were remineralized for 7 days with fluoride dentifrice. Sixty enamel blocks were evaluated at baseline, after demineralization and 30 blocks after remineralization by two examiners using LF, LFpen and FC. They were submitted to surface microhardness (SMH) and cross-sectional microhardness analysis. The integrated loss of surface hardness (ΔKHN) was calculated. The intraclass correlation coefficient for interexaminer reproducibility ranged from 0.21 (FC) to 0.86 (LFpen). SMH, LF and LFpen values presented significant differences among the three phases. However, FC fluorescence values showed no significant differences between the demineralization and remineralization phases. Fluorescence values for baseline, demineralized and remineralized enamel were, respectively, 5.4 ± 1.0, 9.2 ± 2.2 and 7.0 ± 1.5 for LF; 10.5 ± 2.0, 15.0 ± 3.2 and 12.5 ± 2.9 for LFpen, and 1.0 ± 0.0, 1.0 ± 0.1 and 1.0 ± 0.1 for FC. SMH and ΔKHN showed significant differences between demineralization and remineralization phases. There was a negative and significant correlation between SMH and LF and LFpen in the remineralization phase. In conclusion, LF and LFpen devices were effective in detecting demineralization and remineralization on smooth surfaces provoked in situ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MicroRNA miR-199a-5p impairs tight junction formation leading to increased urothelial permeability in bladder pain syndrome. Now using transcriptome analysis in urothelial TEU-2 cells we implicate it in the regulation of cell cycle, cytoskeleton remodeling, TGF and Wnt signaling pathways. MiR-199a-5p is highly expressed in the smooth muscle layer of the bladder and we altered its levels in bladder smooth muscle cells (SMC) to validate the pathway analysis. Inhibition of miR-199a-5p with antimiR increased SMC proliferation, reduced cell size and up-regulated miR-199a-5p targets, including Wnt2. Overexpression of Wnt2 protein or treating SMCs with recombinant Wnt2 closely mimicked the miR-199a-5p inhibition, whereas down-regulation of Wnt2 in antimiR-expressing SMCs with shRNA restored cell phenotype and proliferation rates. Overexpression of miR-199a-5p in the bladder SMCs significantly increased cell size and up-regulated SM22, SM alpha-actin and SM myosin heavy chain mRNA and protein levels. These changes, as well as increased expression of ACTG2, TGFB1I1, and CDKN1A were mediated by up-regulation of smooth muscle-specific transcriptional activator myocardin at mRNA and protein levels. Myocardin-related transcription factor (MRTF-A) downstream targets Id3 and MYL9 were also induced. Up-regulation of myocardin was accompanied by down-regulation of Wnt-dependent inhibitory Kruppel-like transcription factor 4 (KLF4) in miR-199a-5p overexpressing cells. In contrast, KLF4 was induced in antimiR-expressing cells following the activation of Wnt2 signaling, leading to repression of myocardin-dependent genes. MiR-199a-5p plays a critical role in the Wnt2-mediated regulation of proliferative and differentiation processes in the smooth muscle and may behave as a key modulator of smooth muscle hypertrophy, relevant for organ remodeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuous theta burst stimulation (cTBS) represents a promising approach in the treatment of neglect syndrom. However, it is not known whether cTBS in conjunction with another technique may enhance the therapeutic effects. In the present sham-controlled study, we aimed to combine cTBS with smooth pursuit training (SPT), another method known to effectively improve neglect symptoms, and to evaluate whether this combination would result in a stronger effect than SPT alone. Eighteen patients with left spatial neglect after right-hemispheric stroke were included in the study and performed a cancellation task on a large 54.6" touchscreen monitor. A sequential application of cTBS and SPT induced a significantly greater improvement of neglect than SPT alone. After the combined application of these two methods, patients detected significantly more targets and their cancellation behaviour presented a significantly greater shift towards the contralesional hemispace. We suggest that a combined, sequential application of cTBS and SPT is a promising new approach to treat neglect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optogenetics is defined as the integration of optics and genetics to control well-defined events within specified cells of living tissue. In this introduction, we focus on the basic techniques necessary for employing microbial opsins as optogenetic tools in mammalian brains. We provide a guide for the fundamentals of optogenetic application-selecting an opsin, implementing expression of opsins based on the neuroscientific experimental requirements, and adapting the corresponding optical hardware for delivery of light into mammalian brains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A direct electron transfer process between bacterial cells of electrogenic species Geobacter sulfurreducens (Gs) and electrified electrode surfaces was studied to exploit the reactivity of Gs submonolayers on gold and silver surfaces. A submonolayer of Gs was prepared and studied to explore specifically the heterogeneous electron transfer properties at the bacteria/electrode interface. In situ microscopic techniques characterised the morphology of the Gs submonolayers under the operating conditions. In addition, complementary in situ spectroscopic techniques that allowed us to access in situ molecular information of the Gs with high surface selectivity and sensitivity were employed. The results provided clear evidence that the outermost cytochrome C in Gs is responsible for the heterogeneous electron transfer, which is in direct contact with the metal electrode. Feasibility of single cell in situ studies under operating conditions was demonstrated where the combination of surface-electrochemical tools at the nano- and micro-scale with microbiological approaches can offer unique opportunities for the emerging field of electro-microbiology to explore processes and interactions between microorganisms and electrical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Tubules and sheets of endoplasmic reticulum perform different functions and undergo inter-conversion during different stages of the cell cycle. Tubules are stabilized by curvature inducing resident proteins, but little is known about the mechanisms of endoplasmic reticulum sheet stabilization. Tethering of endoplasmic reticulum membranes to the cytoskeleton or to each other has been proposed as a plausible way of sheet stabilization. RESULTS Here, using fluorescence microscopy we show that the previously proposed mechanisms, such as membrane tethering via GFP-dimerization or coiled coil protein aggregation do not explain the formation of the calnexin-induced organized smooth endoplasmic reticulum membrane stacks. We also show that the LINC complex proteins known to serve a tethering function in the nuclear envelope are excluded from endoplasmic reticulum stacks. Finally, using cryo-electron microscopy of vitreous sections methodology that preserves cellular architecture in a hydrated, native-like state, we show that the sheet stacks are highly regular and may contain ordered arrays of macromolecular complexes. Some of these complexes decorate the cytosolic surface of the membranes, whereas others appear to span the width of the cytosolic or luminal space between the stacked sheets. CONCLUSION Our results provide evidence in favour of the hypothesis of endoplasmic reticulum sheet stabilization by intermembrane tethering.