926 resultados para Serotonin uptake inhibitor
Resumo:
Elafin is a neutrophil serine protease inhibitor expressed in lung and displaying anti-inflammatory and anti-bacterial properties. Previous studies demonstrated that some innate host defense molecules of the cystic fibrosis (CF) and chronic obstructive pulmonary disease airways are impaired due to increased proteolytic degradation observed during lung inflammation. In light of these findings, we thus focused on the status of elafin in CF lung. We showed in the present study that elafin is cleaved in sputum from individuals with CF. Pseudomonas aeruginosa-positive CF sputum, which was found to contain lower elafin levels and higher neutrophil elastase (NE) activity compared with P. aeruginosa-negative samples, was particularly effective in cleaving recombinant elafin. NE plays a pivotal role in the process as only NE inhibitors are able to inhibit elafin degradation. Further in vitro studies demonstrated that incubation of recombinant elafin with excess of NE leads to the rapid cleavage of the inhibitor. Two cleavage sites were identified at the N-terminal extremity of elafin (Val-5—Lys-6 and Val-9—Ser-10). Interestingly, purified fragments of the inhibitor (Lys-6—Gln-57 and Ser-10—Gln-57) were shown to still be active for inhibiting NE. However, NE in excess was shown to strongly diminish the ability of elafin to bind lipopolysaccharide (LPS) and its capacity to be immobilized by transglutamination. In conclusion, this study provides evidence that elafin is cleaved by its cognate enzyme NE present at excessive concentration in CF sputum and that P. aeruginosa infection promotes this effect. Such cleavage may have repercussions on the innate immune function of elafin.
Resumo:
Background: Diabetic retinopathy is associated with accumulation of advanced glycation end products in the retinal microvasculature. LR-90 is an effective multistage inhibitor of advanced glycation with renoprotective and anti-inflammatory properties.
Resumo:
Secretory leucoprotease inhibitor (SLPI) is a neutrophil serine protease inhibitor constitutively expressed at many mucosal surfaces, including that of the lung. Originally identified as a serine protease inhibitor, it is now evident that SLPI also has antimicrobial and anti-inflammatory functions, and therefore plays an important role in host defense. Previous work has shown that some host defense proteins such as SLPI and elafin are susceptible to proteolytic degradation. Consequently, we investigated the status of SLPI in the cystic fibrosis (CF) lung. A major factor that contributes to the high mortality rate among CF patients is Pseudomonas aeruginosa infection. In this study, we report that P. aeruginosa-positive CF bronchoalveolar lavage fluid, which contains lower SLPI levels and higher neutrophil elastase (NE) activity compared with P. aeruginosa-negative samples, was particularly effective at cleaving recombinant human SLPI. Additionally, we found that only NE inhibitors were able to prevent SLPI cleavage, thereby implicating NE in this process. NE in excess was found to cleave recombinant SLPI at two novel sites in the NH(2)-terminal region and abrogate its ability to bind LPS and NF-kappaB consensus binding sites but not its ability to inhibit activity of the serine protease cathepsin G. In conclusion, this study provides evidence that SLPI is cleaved and inactivated by NE present in P. aeruginosa-positive CF lung secretions and that P. aeruginosa infection contributes to inactivation of the host defense screen in the CF lung.
Resumo:
Background and aim: Aberrant angiogenesis and defective epithelial repair are key features of idiopathic pulmonary fibrosis (IPF). Endostatin is an antiangiogenic peptide with known effects on endothelial cells. This study aimed to establish the levels of endostatin in the bronchoalveolar lavage fluid (BALF) in IPF and to investigate its actions on distal lung epithelial cells (DLEC) and primary type II cells.
Cardiac rehabilitation uptake following myocardial infarction: cross-sectional study in primary care
Resumo:
Background Policies suggest that primary care should be more involved in delivering cardiac rehabilitation. However, there is a lack of information about what is known in primary care regarding patients' invitation or attendance. Aim To determine, within primary care, how many patients are invited to and attend rehabilitation after myocardial infarction (MI), examine sociodemographic factors related to invitation, and compare quality of life between those who do and do not attend. Design of study Review of primary care paper and computer records; cross-sectional questionnaire. Setting Northern Ireland general practices (38); stratified sample, based on practice size and health board area. Method Patients, identified from primary care records, 12-16?weeks after a confirmed diagnosis of MI, were posted questionnaires, including a validated MacNew post-MI quality-of-life questionnaire. Practices returned anonymised data for non-responders. Results Information about rehabilitation was available for 332 of the 432 patients identified (76.9%): 162 (37.5%) returned questionnaires. Of the total sample, 54.4% (235/432) were invited and 37.0% (160/432) attended; of those invited, 68.1% (160/235) attended. Invited patients were younger than those not invited (mean age 63?years [standard deviation SD 16] versus 68.5?years [SD 16]); mean difference 5.5?years (95% confidence interval [CI] = 1.7 to 9.3). Among questionnaire responders, those who attended were younger and reported better emotional, physical, and social functioning than non-attenders (P = 0.01; mean differences 0.44 (95% CI = 0.11 to 0.77), 0.48 (95% CI = 0.10 to 0.85) and 0.54 (95% CI = 0.15 to 0.94) respectively). Conclusion Innovative strategies are needed to improve cardiac rehabilitation uptake, integration of hospital and primary care services, and healthcare professionals' awareness of patients' potential for health gain after MI.
Resumo:
A study has been carried out to investigate whether the action of triclabendazole (TCBZ) is altered in the presence of a metabolic inhibitor. The flavin monooxygenase system (FMO) was inhibited using methimazole (MTZ) to see whether a TCBZ-resistant isolate could be made more sensitive to TCBZ action. The Oberon TCBZ-resistant and Cullompton TCBZ-sensitive isolates Were used for these experiments. The FMO system was inhibited by a 2-h pre-incubation in methimazole (100 mu M). Flukes were then incubated for I further 22 h in NCTC medium containing either MTZ; MTZ+nicotinamide adenine dinucleotide phosphate (NADPH) (1 nm); MTZ+NADPH+TCBZ (15 mu g/ml); or MTZ+NADPH+triclabendazole sulphoxide (TCBZ.SO) (15 mu g/ml). Morphological changes resulting from drug treatment and following metabolic inhibition were assessed Using scanning electron microscopy'. After treatment with either TCBZ or TCBZ.SO alone, there was greater surface disruption to the triclabendazole-susceptible than -resistant isolate. However, co-incubation with MTZ and TCBZ/TCBZ.SO lead to more severe surface changes to the TCBZ-resistant isolate than with each drug oil its own; this was not seen for the TCBZ-susceptible Cullompton isolate. Results of this study support the concept of altered drug metabolism in TCBZ-Resistant flukes and this process may play a role in the development of drug resistance.
Resumo:
Alternative NADH dehydrogenases (NADH:ubiquinone oxidoreductases) are single subunit respiratory chain enzymes found in plant and fungal mitochondria and in many bacteria. It is unclear how these peripheral membrane proteins interact with their hydrophobic substrate ubiquinone. Known inhibitors of alternative NADH dehydrogenases bind with rather low affinities. We have identified 1-hydroxy-2-dodecyl-4(1H)quinolone as a high affinity inhibitor of alternative NADH dehydrogenase from Yarrowia lipolytica. Using this compound, we have analyzed the bisubstrate and inhibition kinetics for NADH and decylubiquinone. We found that the kinetics of alternative NADH dehydrogenase follow a ping-pong mechanism. This suggests that NADH and the ubiquinone headgroup interact with the same binding pocket in an alternating fashion.
Resumo:
Skin kininogens from bombinid toads encode an array of bradykinin-related peptides and one such kininogen from Bombina maxima also encodes the potent bradykinin B2-receptor antagonist, kinestatin. In order to determine if the skin secretion of the closely-related toad, Bombina orientalis, contained a bradykinin inhibitory peptide related to kinestatin, we screened reverse phase HPLC fractions of defensive skin secretion using a rat tail artery smooth muscle preparation. A fraction was located that inhibited bradykinin-induced relaxation of the preparation and this contained a peptide of 3198.5 Da as determined by MALDI-TOF MS. Automated Edman degradation of this peptide established the identity of a 28-mer as: DMYEIKGFKSAHGRPRVCPPGEQCPIWV, with a disulfide-bridge between Cys18 and Cys24 and an amidated C-terminal Val residue. Peptide DV-28 was found to correspond to residues 133–160 of skin pre-kininogen-2 of B. orientalis that also encodes two copies of (Thr6)-bradykinin. The C-terminal residue, Gly-161, of the precursor open-reading frame, acts as the C-terminal amide donor of mature DV-28. DV-28 amide thus represents a new class of bradykinin inhibitor peptide from amphibian skin secretion.