818 resultados para Robust Regression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sclera segmentation is shown to be of significant importance for eye and iris biometrics. However, sclera segmentation has not been extensively researched as a separate topic, but mainly summarized as a component of a broader task. This paper proposes a novel sclera segmentation algorithm for colour images which operates at pixel-level. Exploring various colour spaces, the proposed approach is robust to image noise and different gaze directions. The algorithm’s robustness is enhanced by a two-stage classifier. At the first stage, a set of simple classifiers is employed, while at the second stage, a neural network classifier operates on the probabilities’ space generated by the classifiers at stage 1. The proposed method was ranked the 1st in Sclera Segmentation Benchmarking Competition 2015, part of BTAS 2015, with a precision of 95.05% corresponding to a recall of 94.56%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forecasting wind power is an important part of a successful integration of wind power into the power grid. Forecasts with lead times longer than 6 h are generally made by using statistical methods to post-process forecasts from numerical weather prediction systems. Two major problems that complicate this approach are the non-linear relationship between wind speed and power production and the limited range of power production between zero and nominal power of the turbine. In practice, these problems are often tackled by using non-linear non-parametric regression models. However, such an approach ignores valuable and readily available information: the power curve of the turbine's manufacturer. Much of the non-linearity can be directly accounted for by transforming the observed power production into wind speed via the inverse power curve so that simpler linear regression models can be used. Furthermore, the fact that the transformed power production has a limited range can be taken care of by employing censored regression models. In this study, we evaluate quantile forecasts from a range of methods: (i) using parametric and non-parametric models, (ii) with and without the proposed inverse power curve transformation and (iii) with and without censoring. The results show that with our inverse (power-to-wind) transformation, simpler linear regression models with censoring perform equally or better than non-linear models with or without the frequently used wind-to-power transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anti-spoofing is attracting growing interest in biometrics, considering the variety of fake materials and new means to attack biometric recognition systems. New unseen materials continuously challenge state-of-the-art spoofing detectors, suggesting for additional systematic approaches to target anti-spoofing. By incorporating liveness scores into the biometric fusion process, recognition accuracy can be enhanced, but traditional sum-rule based fusion algorithms are known to be highly sensitive to single spoofed instances. This paper investigates 1-median filtering as a spoofing-resistant generalised alternative to the sum-rule targeting the problem of partial multibiometric spoofing where m out of n biometric sources to be combined are attacked. Augmenting previous work, this paper investigates the dynamic detection and rejection of livenessrecognition pair outliers for spoofed samples in true multi-modal configuration with its inherent challenge of normalisation. As a further contribution, bootstrap aggregating (bagging) classifiers for fingerprint spoof-detection algorithm is presented. Experiments on the latest face video databases (Idiap Replay- Attack Database and CASIA Face Anti-Spoofing Database), and fingerprint spoofing database (Fingerprint Liveness Detection Competition 2013) illustrate the efficiency of proposed techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While a multitude of motion segmentation algorithms have been presented in the literature, there has not been an objective assessment of different approaches to fusing their outputs. This paper investigates the application of 4 different fusion schemes to the outputs of 3 probabilistic pixel-level segmentation algorithms. We performed an extensive experimentation using 6 challenge categories from the changedetection.net dataset demonstrating that in general simple majority vote proves to be more effective than more complex fusion schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The level of agreement between climate model simulations and observed surface temperature change is a topic of scientific and policy concern. While the Earth system continues to accumulate energy due to anthropogenic and other radiative forcings, estimates of recent surface temperature evolution fall at the lower end of climate model projections. Global mean temperatures from climate model simulations are typically calculated using surface air temperatures, while the corresponding observations are based on a blend of air and sea surface temperatures. This work quantifies a systematic bias in model-observation comparisons arising from differential warming rates between sea surface temperatures and surface air temperatures over oceans. A further bias arises from the treatment of temperatures in regions where the sea ice boundary has changed. Applying the methodology of the HadCRUT4 record to climate model temperature fields accounts for 38% of the discrepancy in trend between models and observations over the period 1975–2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis examines three different, but related problems in the broad area of portfolio management for long-term institutional investors, and focuses mainly on the case of pension funds. The first idea (Chapter 3) is the application of a novel numerical technique – robust optimization – to a real-world pension scheme (the Universities Superannuation Scheme, USS) for first time. The corresponding empirical results are supported by many robustness checks and several benchmarks such as the Bayes-Stein and Black-Litterman models that are also applied for first time in a pension ALM framework, the Sharpe and Tint model and the actual USS asset allocations. The second idea presented in Chapter 4 is the investigation of whether the selection of the portfolio construction strategy matters in the SRI industry, an issue of great importance for long term investors. This study applies a variety of optimal and naïve portfolio diversification techniques to the same SRI-screened universe, and gives some answers to the question of which portfolio strategies tend to create superior SRI portfolios. Finally, the third idea (Chapter 5) compares the performance of a real-world pension scheme (USS) before and after the recent major changes in the pension rules under different dynamic asset allocation strategies and the fixed-mix portfolio approach and quantifies the redistributive effects between various stakeholders. Although this study deals with a specific pension scheme, the methodology can be applied by other major pension schemes in countries such as the UK and USA that have changed their rules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we introduce a new adenoviral vector where transgene expression is driven by p53. We first developed a synthetic promoter, referred to as PGTx beta containing a p53-responsive element, a minimal promoter and the first intron of the rabbit P-globin gene. Initial assays using plasmid-based vectors indicated that expression was tightly controlled by p53 and was 5-fold stronger than the constitutive CMV immediate early promoter/enhancer. The adenoviral vector, AdPG, was also shown to offer p53-responsive expression in prostate carcinoma cells LNCaP (wt p53), DU-145 (temperature sensitive mutant of p53) and PC3 (p53-null, but engineered to express temperature-sensitive p53 mutants). AdPG served as a sensor of p53 activity in LNCaP cells treated with chemotherapeutic agents. Since p53 can be induced by radiotherapy and chemotherapy, this new vector could be further developed for use in combination with conventional therapies to bring about cooperation between the genetic and pharmacologic treatment modalities. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human respiratory syncytial virus (HRSV) is the major pathogen leading to respiratory disease in infants and neonates worldwide. An effective vaccine has not yet been developed against this virus, despite considerable efforts in basic and clinical research. HRSV replication is independent of the nuclear RNA processing constraints, since the virus genes are adapted to the cytoplasmic transcription, a process performed by the viral RNA-dependent RNA polymerase. This study shows that meaningful nuclear RNA polymerase II dependent expression of the HRSV nucleoprotein (N) and phosphoprotein (F) proteins can only be achieved with the optimization of their genes, and that the intracellular localization of N and P proteins changes when they are expressed out of the virus replication context. Immunization tests performed in mice resulted in the induction of humoral immunity using the optimized genes. This result was not observed for the non-optimized genes. In conclusion, optimization is a valuable tool for improving expression of HRSV genes in DNA vaccines. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we present a generalization of the Bayesian methodology introduced by Cepeda and Gamerman (2001) for modeling variance heterogeneity in normal regression models where we have orthogonality between mean and variance parameters to the general case considering both linear and highly nonlinear regression models. Under the Bayesian paradigm, we use MCMC methods to simulate samples for the joint posterior distribution. We illustrate this algorithm considering a simulated data set and also considering a real data set related to school attendance rate for children in Colombia. Finally, we present some extensions of the proposed MCMC algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we compare the performance of two statistical approaches for the analysis of data obtained from the social research area. In the first approach, we use normal models with joint regression modelling for the mean and for the variance heterogeneity. In the second approach, we use hierarchical models. In the first case, individual and social variables are included in the regression modelling for the mean and for the variance, as explanatory variables, while in the second case, the variance at level 1 of the hierarchical model depends on the individuals (age of the individuals), and in the level 2 of the hierarchical model, the variance is assumed to change according to socioeconomic stratum. Applying these methodologies, we analyze a Colombian tallness data set to find differences that can be explained by socioeconomic conditions. We also present some theoretical and empirical results concerning the two models. From this comparative study, we conclude that it is better to jointly modelling the mean and variance heterogeneity in all cases. We also observe that the convergence of the Gibbs sampling chain used in the Markov Chain Monte Carlo method for the jointly modeling the mean and variance heterogeneity is quickly achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nesse artigo, tem-se o interesse em avaliar diferentes estratégias de estimação de parâmetros para um modelo de regressão linear múltipla. Para a estimação dos parâmetros do modelo foram utilizados dados de um ensaio clínico em que o interesse foi verificar se o ensaio mecânico da propriedade de força máxima (EM-FM) está associada com a massa femoral, com o diâmetro femoral e com o grupo experimental de ratas ovariectomizadas da raça Rattus norvegicus albinus, variedade Wistar. Para a estimação dos parâmetros do modelo serão comparadas três metodologias: a metodologia clássica, baseada no método dos mínimos quadrados; a metodologia Bayesiana, baseada no teorema de Bayes; e o método Bootstrap, baseado em processos de reamostragem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this series of papers, we study issues related to the synchronization of two coupled chaotic discrete systems arising from secured communication. The first part deals with uniform dissipativeness with respect to parameter variation via the Liapunov direct method. We obtain uniform estimates of the global attractor for a general discrete nonautonomous system, that yields a uniform invariance principle in the autonomous case. The Liapunov function is allowed to have positive derivative along solutions of the system inside a bounded set, and this reduces substantially the difficulty of constructing a Liapunov function for a given system. In particular, we develop an approach that incorporates the classical Lagrange multiplier into the Liapunov function method to naturally extend those Liapunov functions from continuous dynamical system to their discretizations, so that the corresponding uniform dispativeness results are valid when the step size of the discretization is small. Applications to the discretized Lorenz system and the discretization of a time-periodic chaotic system are given to illustrate the general results. We also show how to obtain uniform estimation of attractors for parametrized linear stable systems with nonlinear perturbation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of bivariate distributions plays a fundamental role in survival and reliability studies. In this paper, we consider a location scale model for bivariate survival times based on the proposal of a copula to model the dependence of bivariate survival data. For the proposed model, we consider inferential procedures based on maximum likelihood. Gains in efficiency from bivariate models are also examined in the censored data setting. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and compared to the performance of the bivariate regression model for matched paired survival data. Sensitivity analysis methods such as local and total influence are presented and derived under three perturbation schemes. The martingale marginal and the deviance marginal residual measures are used to check the adequacy of the model. Furthermore, we propose a new measure which we call modified deviance component residual. The methodology in the paper is illustrated on a lifetime data set for kidney patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we have discussed inference aspects of the skew-normal nonlinear regression models following both, a classical and Bayesian approach, extending the usual normal nonlinear regression models. The univariate skew-normal distribution that will be used in this work was introduced by Sahu et al. (Can J Stat 29:129-150, 2003), which is attractive because estimation of the skewness parameter does not present the same degree of difficulty as in the case with Azzalini (Scand J Stat 12:171-178, 1985) one and, moreover, it allows easy implementation of the EM-algorithm. As illustration of the proposed methodology, we consider a data set previously analyzed in the literature under normality.