819 resultados para Robust Convergence
Resumo:
In this paper, an alternative skew Student-t family of distributions is studied. It is obtained as an extension of the generalized Student-t (GS-t) family introduced by McDonald and Newey [10]. The extension that is obtained can be seen as a reparametrization of the skewed GS-t distribution considered by Theodossiou [14]. A key element in the construction of such an extension is that it can be stochastically represented as a mixture of an epsilon-skew-power-exponential distribution [1] and a generalized-gamma distribution. From this representation, we can readily derive theoretical properties and easy-to-implement simulation schemes. Furthermore, we study some of its main properties including stochastic representation, moments and asymmetry and kurtosis coefficients. We also derive the Fisher information matrix, which is shown to be nonsingular for some special cases such as when the asymmetry parameter is null, that is, at the vicinity of symmetry, and discuss maximum-likelihood estimation. Simulation studies for some particular cases and real data analysis are also reported, illustrating the usefulness of the extension considered.
Resumo:
This work presents the application of Linear Matrix Inequalities to the robust and optimal adjustment of Power System Stabilizers with pre-defined structure. Results of some tests show that gain and zeros adjustments are sufficient to guarantee robust stability and performance with respect to various operating points. Making use of the flexible structure of LMI's, we propose an algorithm that minimizes the norm of the controllers gain matrix while it guarantees the damping factor specified for the closed loop system, always using a controller with flexible structure. The technique used here is the pole placement, whose objective is to place the poles of the closed loop system in a specific region of the complex plane. Results of tests with a nine-machine system are presented and discussed, in order to validate the algorithm proposed. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Our objective here is to prove that the uniform convergence of a sequence of Kurzweil integrable functions implies the convergence of the sequence formed by its corresponding integrals.
Resumo:
In this paper, we carry out robust modeling and influence diagnostics in Birnbaum-Saunders (BS) regression models. Specifically, we present some aspects related to BS and log-BS distributions and their generalizations from the Student-t distribution, and develop BS-t regression models, including maximum likelihood estimation based on the EM algorithm and diagnostic tools. In addition, we apply the obtained results to real data from insurance, which shows the uses of the proposed model. Copyright (c) 2011 John Wiley & Sons, Ltd.
Resumo:
Solution of structural reliability problems by the First Order method require optimization algorithms to find the smallest distance between a limit state function and the origin of standard Gaussian space. The Hassofer-Lind-Rackwitz-Fiessler (HLRF) algorithm, developed specifically for this purpose, has been shown to be efficient but not robust, as it fails to converge for a significant number of problems. On the other hand, recent developments in general (augmented Lagrangian) optimization techniques have not been tested in aplication to structural reliability problems. In the present article, three new optimization algorithms for structural reliability analysis are presented. One algorithm is based on the HLRF, but uses a new differentiable merit function with Wolfe conditions to select step length in linear search. It is shown in the article that, under certain assumptions, the proposed algorithm generates a sequence that converges to the local minimizer of the problem. Two new augmented Lagrangian methods are also presented, which use quadratic penalties to solve nonlinear problems with equality constraints. Performance and robustness of the new algorithms is compared to the classic augmented Lagrangian method, to HLRF and to the improved HLRF (iHLRF) algorithms, in the solution of 25 benchmark problems from the literature. The new proposed HLRF algorithm is shown to be more robust than HLRF or iHLRF, and as efficient as the iHLRF algorithm. The two augmented Lagrangian methods proposed herein are shown to be more robust and more efficient than the classical augmented Lagrangian method.
A Robust Structural PGN Model for Control of Cell-Cycle Progression Stabilized by Negative Feedbacks
Resumo:
The cell division cycle comprises a sequence of phenomena controlled by a stable and robust genetic network. We applied a probabilistic genetic network (PGN) to construct a hypothetical model with a dynamical behavior displaying the degree of robustness typical of the biological cell cycle. The structure of our PGN model was inspired in well-established biological facts such as the existence of integrator subsystems, negative and positive feedback loops, and redundant signaling pathways. Our model represents genes interactions as stochastic processes and presents strong robustness in the presence of moderate noise and parameters fluctuations. A recently published deterministic yeast cell-cycle model does not perform as well as our PGN model, even upon moderate noise conditions. In addition, self stimulatory mechanisms can give our PGN model the possibility of having a pacemaker activity similar to the observed in the oscillatory embryonic cell cycle.
Resumo:
This review is addressed two pathophysiologic mechanisms implicated in the pathogenesis of nasal polyposis: the unique remodeling process found in nasal polyp tissue and the immune response of patients with nasal polyposis to Staphylococcus aureus. These two theories converge to the same direction in different aspects, including decreased extracellular matrix production, impaired T regulation and favoring of a Th2 immune response. In patients with nasal polyposis, an exaggerated immune response to Staphylococcus aureus may aggravate the airway remodeling process.
Resumo:
This work proposes a computational tool to assist power system engineers in the field tuning of power system stabilizers (PSSs) and Automatic Voltage Regulators (AVRs). The outcome of this tool is a range of gain values for theses controllers within which there is a theoretical guarantee of stability for the closed-loop system. This range is given as a set of limit values for the static gains of the controllers of interest, in such a way that the engineer responsible for the field tuning of PSSs and/or AVRs can be confident with respect to system stability when adjusting the corresponding static gains within this range. This feature of the proposed tool is highly desirable from a practical viewpoint, since the PSS and AVR commissioning stage always involve some readjustment of the controller gains to account for the differences between the nominal model and the actual behavior of the system. By capturing these differences as uncertainties in the model, this computational tool is able to guarantee stability for the whole uncertain model using an approach based on linear matrix inequalities. It is also important to remark that the tool proposed in this paper can also be applied to other types of parameters of either PSSs or Power Oscillation Dampers, as well as other types of controllers (such as speed governors, for example). To show its effectiveness, applications of the proposed tool to two benchmarks for small signal stability studies are presented at the end of this paper.
Resumo:
The growing demands for industrial products are imposing an increasingly intense level of competitiveness on the industrial operations. In the meantime, the convergence of information technology (IT) and automation technology (AT) is showing itself to be a tool of great potential for the modernization and improvement of industrial plants. However, for this technology fully to achieve its potential, several obstacles need to be overcome, including the demonstration of the reasoning behind estimations of benefits, investments and risks used to plan the implementation of corporative technology solutions. This article focuses on the evolutionary development of planning and adopting processes of IT & AT convergence. It proposes the incorporation of IT & AT convergence practices into Lean Thinking/Six Sigma, via the method used for planning the convergence of technological activities, known as the Smarter Operation Transformation (SOT) methodology. This article illustrates the SOT methodology through its application in a Brazilian company in the sector of consumer goods. In this application, it is shown that with IT & AT convergence is possible with low investment, in order to reduce the risk of not achieving the goals of key indicators.
Resumo:
[EN] The accuracy and performance of current variational optical ow methods have considerably increased during the last years. The complexity of these techniques is high and enough care has to be taken for the implementation. The aim of this work is to present a comprehensible implementation of recent variational optical flow methods. We start with an energy model that relies on brightness and gradient constancy terms and a ow-based smoothness term. We minimize this energy model and derive an e cient implicit numerical scheme. In the experimental results, we evaluate the accuracy and performance of this implementation with the Middlebury benchmark database. We show that it is a competitive solution with respect to current methods in the literature. In order to increase the performance, we use a simple strategy to parallelize the execution on multi-core processors.
Resumo:
[EN] In this work, we describe an implementation of the variational method proposed by Brox et al. in 2004, which yields accurate optical flows with low running times. It has several benefits with respect to the method of Horn and Schunck: it is more robust to the presence of outliers, produces piecewise-smooth flow fields and can cope with constant brightness changes. This method relies on the brightness and gradient constancy assumptions, using the information of the image intensities and the image gradients to find correspondences. It also generalizes the use of continuous L1 functionals, which help mitigate the efect of outliers and create a Total Variation (TV) regularization. Additionally, it introduces a simple temporal regularization scheme that enforces a continuous temporal coherence of the flow fields.
Resumo:
[EN] In this paper we show that a classic optical flow technique by Nagel and Enkelmann can be regarded as an early anisotropic diffusion method with a diffusion tensor. We introduce three improvements into the model formulation that avoid inconsistencies caused by centering the brightness term and the smoothness term in different images use a linear scale-space focusing strategy from coarse to fine scales for avoiding convergence to physically irrelevant local minima, and create an energy functional that is invariant under linear brightness changes. Applying a gradient descent method to the resulting energy functional leads to a system of diffusion-reaction equations. We prove that this system has a unique solution under realistic assumptions on the initial data, and we present an efficient linear implicit numerical scheme in detail. Our method creates flow fields with 100% density over the entire image domain, it is robust under a large range of parameter variations, and it can recover displacement fields that are far beyond the typical one-pixel limits which are characteristic for many differential methods for determining optical flow. We show that it performs better than the classic optical flow methods with 100% density that are evaluated by Barron et al. (1994). Our software is available from the Internet.
Resumo:
[EN] This paper presents an interpretation of a classic optical flow method by Nagel and Enkelmann as a tensor-driven anisotropic diffusion approach in digital image analysis. We introduce an improvement into the model formulation, and we establish well-posedness results for the resulting system of parabolic partial differential equations. Our method avoids linearizations in the optical flow constraint, and it can recover displacement fields which are far beyond the typical one-pixel limits that are characteristic for many differential methods for optical flow recovery. A robust numerical scheme is presented in detail. We avoid convergence to irrelevant local minima by embedding our method into a linear scale-space framework and using a focusing strategy from coarse to fine scales. The high accuracy of the proposed method is demonstrated by means of a synthetic and a real-world image sequence.