709 resultados para Predicción


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hoy en día, con la evolución continua y rápida de las tecnologías de la información y los dispositivos de computación, se recogen y almacenan continuamente grandes volúmenes de datos en distintos dominios y a través de diversas aplicaciones del mundo real. La extracción de conocimiento útil de una cantidad tan enorme de datos no se puede realizar habitualmente de forma manual, y requiere el uso de técnicas adecuadas de aprendizaje automático y de minería de datos. La clasificación es una de las técnicas más importantes que ha sido aplicada con éxito a varias áreas. En general, la clasificación se compone de dos pasos principales: en primer lugar, aprender un modelo de clasificación o clasificador a partir de un conjunto de datos de entrenamiento, y en segundo lugar, clasificar las nuevas instancias de datos utilizando el clasificador aprendido. La clasificación es supervisada cuando todas las etiquetas están presentes en los datos de entrenamiento (es decir, datos completamente etiquetados), semi-supervisada cuando sólo algunas etiquetas son conocidas (es decir, datos parcialmente etiquetados), y no supervisada cuando todas las etiquetas están ausentes en los datos de entrenamiento (es decir, datos no etiquetados). Además, aparte de esta taxonomía, el problema de clasificación se puede categorizar en unidimensional o multidimensional en función del número de variables clase, una o más, respectivamente; o también puede ser categorizado en estacionario o cambiante con el tiempo en función de las características de los datos y de la tasa de cambio subyacente. A lo largo de esta tesis, tratamos el problema de clasificación desde tres perspectivas diferentes, a saber, clasificación supervisada multidimensional estacionaria, clasificación semisupervisada unidimensional cambiante con el tiempo, y clasificación supervisada multidimensional cambiante con el tiempo. Para llevar a cabo esta tarea, hemos usado básicamente los clasificadores Bayesianos como modelos. La primera contribución, dirigiéndose al problema de clasificación supervisada multidimensional estacionaria, se compone de dos nuevos métodos de aprendizaje de clasificadores Bayesianos multidimensionales a partir de datos estacionarios. Los métodos se proponen desde dos puntos de vista diferentes. El primer método, denominado CB-MBC, se basa en una estrategia de envoltura de selección de variables que es voraz y hacia delante, mientras que el segundo, denominado MB-MBC, es una estrategia de filtrado de variables con una aproximación basada en restricciones y en el manto de Markov. Ambos métodos han sido aplicados a dos problemas reales importantes, a saber, la predicción de los inhibidores de la transcriptasa inversa y de la proteasa para el problema de infección por el virus de la inmunodeficiencia humana tipo 1 (HIV-1), y la predicción del European Quality of Life-5 Dimensions (EQ-5D) a partir de los cuestionarios de la enfermedad de Parkinson con 39 ítems (PDQ-39). El estudio experimental incluye comparaciones de CB-MBC y MB-MBC con los métodos del estado del arte de la clasificación multidimensional, así como con métodos comúnmente utilizados para resolver el problema de predicción de la enfermedad de Parkinson, a saber, la regresión logística multinomial, mínimos cuadrados ordinarios, y mínimas desviaciones absolutas censuradas. En ambas aplicaciones, los resultados han sido prometedores con respecto a la precisión de la clasificación, así como en relación al análisis de las estructuras gráficas que identifican interacciones conocidas y novedosas entre las variables. La segunda contribución, referida al problema de clasificación semi-supervisada unidimensional cambiante con el tiempo, consiste en un método nuevo (CPL-DS) para clasificar flujos de datos parcialmente etiquetados. Los flujos de datos difieren de los conjuntos de datos estacionarios en su proceso de generación muy rápido y en su aspecto de cambio de concepto. Es decir, los conceptos aprendidos y/o la distribución subyacente están probablemente cambiando y evolucionando en el tiempo, lo que hace que el modelo de clasificación actual sea obsoleto y deba ser actualizado. CPL-DS utiliza la divergencia de Kullback-Leibler y el método de bootstrapping para cuantificar y detectar tres tipos posibles de cambio: en las predictoras, en la a posteriori de la clase o en ambas. Después, si se detecta cualquier cambio, un nuevo modelo de clasificación se aprende usando el algoritmo EM; si no, el modelo de clasificación actual se mantiene sin modificaciones. CPL-DS es general, ya que puede ser aplicado a varios modelos de clasificación. Usando dos modelos diferentes, el clasificador naive Bayes y la regresión logística, CPL-DS se ha probado con flujos de datos sintéticos y también se ha aplicado al problema real de la detección de código malware, en el cual los nuevos ficheros recibidos deben ser continuamente clasificados en malware o goodware. Los resultados experimentales muestran que nuestro método es efectivo para la detección de diferentes tipos de cambio a partir de los flujos de datos parcialmente etiquetados y también tiene una buena precisión de la clasificación. Finalmente, la tercera contribución, sobre el problema de clasificación supervisada multidimensional cambiante con el tiempo, consiste en dos métodos adaptativos, a saber, Locally Adpative-MB-MBC (LA-MB-MBC) y Globally Adpative-MB-MBC (GA-MB-MBC). Ambos métodos monitorizan el cambio de concepto a lo largo del tiempo utilizando la log-verosimilitud media como métrica y el test de Page-Hinkley. Luego, si se detecta un cambio de concepto, LA-MB-MBC adapta el actual clasificador Bayesiano multidimensional localmente alrededor de cada nodo cambiado, mientras que GA-MB-MBC aprende un nuevo clasificador Bayesiano multidimensional. El estudio experimental realizado usando flujos de datos sintéticos multidimensionales indica los méritos de los métodos adaptativos propuestos. ABSTRACT Nowadays, with the ongoing and rapid evolution of information technology and computing devices, large volumes of data are continuously collected and stored in different domains and through various real-world applications. Extracting useful knowledge from such a huge amount of data usually cannot be performed manually, and requires the use of adequate machine learning and data mining techniques. Classification is one of the most important techniques that has been successfully applied to several areas. Roughly speaking, classification consists of two main steps: first, learn a classification model or classifier from an available training data, and secondly, classify the new incoming unseen data instances using the learned classifier. Classification is supervised when the whole class values are present in the training data (i.e., fully labeled data), semi-supervised when only some class values are known (i.e., partially labeled data), and unsupervised when the whole class values are missing in the training data (i.e., unlabeled data). In addition, besides this taxonomy, the classification problem can be categorized into uni-dimensional or multi-dimensional depending on the number of class variables, one or more, respectively; or can be also categorized into stationary or streaming depending on the characteristics of the data and the rate of change underlying it. Through this thesis, we deal with the classification problem under three different settings, namely, supervised multi-dimensional stationary classification, semi-supervised unidimensional streaming classification, and supervised multi-dimensional streaming classification. To accomplish this task, we basically used Bayesian network classifiers as models. The first contribution, addressing the supervised multi-dimensional stationary classification problem, consists of two new methods for learning multi-dimensional Bayesian network classifiers from stationary data. They are proposed from two different points of view. The first method, named CB-MBC, is based on a wrapper greedy forward selection approach, while the second one, named MB-MBC, is a filter constraint-based approach based on Markov blankets. Both methods are applied to two important real-world problems, namely, the prediction of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors, and the prediction of the European Quality of Life-5 Dimensions (EQ-5D) from 39-item Parkinson’s Disease Questionnaire (PDQ-39). The experimental study includes comparisons of CB-MBC and MB-MBC against state-of-the-art multi-dimensional classification methods, as well as against commonly used methods for solving the Parkinson’s disease prediction problem, namely, multinomial logistic regression, ordinary least squares, and censored least absolute deviations. For both considered case studies, results are promising in terms of classification accuracy as well as regarding the analysis of the learned MBC graphical structures identifying known and novel interactions among variables. The second contribution, addressing the semi-supervised uni-dimensional streaming classification problem, consists of a novel method (CPL-DS) for classifying partially labeled data streams. Data streams differ from the stationary data sets by their highly rapid generation process and their concept-drifting aspect. That is, the learned concepts and/or the underlying distribution are likely changing and evolving over time, which makes the current classification model out-of-date requiring to be updated. CPL-DS uses the Kullback-Leibler divergence and bootstrapping method to quantify and detect three possible kinds of drift: feature, conditional or dual. Then, if any occurs, a new classification model is learned using the expectation-maximization algorithm; otherwise, the current classification model is kept unchanged. CPL-DS is general as it can be applied to several classification models. Using two different models, namely, naive Bayes classifier and logistic regression, CPL-DS is tested with synthetic data streams and applied to the real-world problem of malware detection, where the new received files should be continuously classified into malware or goodware. Experimental results show that our approach is effective for detecting different kinds of drift from partially labeled data streams, as well as having a good classification performance. Finally, the third contribution, addressing the supervised multi-dimensional streaming classification problem, consists of two adaptive methods, namely, Locally Adaptive-MB-MBC (LA-MB-MBC) and Globally Adaptive-MB-MBC (GA-MB-MBC). Both methods monitor the concept drift over time using the average log-likelihood score and the Page-Hinkley test. Then, if a drift is detected, LA-MB-MBC adapts the current multi-dimensional Bayesian network classifier locally around each changed node, whereas GA-MB-MBC learns a new multi-dimensional Bayesian network classifier from scratch. Experimental study carried out using synthetic multi-dimensional data streams shows the merits of both proposed adaptive methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

De la Tesis que se está redactando en estos momentos “Validación del Método Eraso en Terrenos Volcánicos del Macizo de Anaga - Tenerife”,se ha extraído una de las varias conclusiones con éxito obtenidas, que es el caso concreto de la galería El Arroyo por dos razones importantes, una que es la más caudalosa de todas y tiene actualmente el mayor caudal aforado. Y la otra razón, que es la única que presenta dos rumbos bien diferenciados, por lo que se tiene la oportunidad de comprobar en ambos casos y sin más variables posibles que la propia del terreno, el Método Eraso de “Predicción de las Direcciones Principales de Drenaje Subterráneo en Macizos Anisótropos”.Hasta la fecha, el Método Eraso se ha validado en terrenos de comportamiento anisótropo como: karst, yesos, cuarcitas, criokarst (karst en el hielo glaciar), etc. pero nunca se había validado en terrenos volcánicos, donde está centrada la tesis y concretamente en la zona de mayor anisotropía existente en la isla de Tenerife, ya que el Macizo de Anaga es un escudo de materiales muy antiguos, conformado por una gran y extensa red de diques que pertenecen a la familia del eje estructural NE de la isla.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este documento se generó a partir de la IV Reunión de la Red Temática FRUTURA de CYTED realizada en la Facultad de Ciencias Agronómicas de la Universidad de Chile ubicada en Santiago de Chile. Esta reunión se celebró durante el mes de diciembre del 2010 y fue organizada por el Centro de Estudios Postcosecha (CEPOC) de esta Universidad. En esta reunión se realizaron dos seminarios relacionados con aspectos tecnológicos y situación comercial de la exportación frutícola en Iberoamérica. El primer seminario tuvo por título “Seminario Internacional sobre Evaluación no Destructiva de la Calidad e Implementación en la Industria Frutícola” y contó con la participación como expositores de los miembros de la red. Este evento mostró las tendencias actuales relacionadas con el transporte y trazabilidad, monitoreo y predicción de la calidad en la industria frutícola. Durante el segundo seminario titulado “Tendencias Actuales de las Agroexportaciones en Chile” se conocieron los desafíos del transporte de frutas desde el hemisferio sur al mundo, las barreras de protección y control fitosanitario y las herramientas de promoción en la apertura de nuevos mercados. En cada seminario asistieron más de 80 personas vinculadas con la investigación, transferencia y el sector privado (productores, exportadores y empresas de servicio). Esta actividad fue apoyada por las empresas de transporte TRANSFRESH Chile S.A. y GESEX exportadora, la asociación gremial FEDEFRUTA, las instituciones públicas PROCHILE y Servicio Agrícola Ganadero (SAG). Los trabajos aquí expuestos son el resultado de la adaptación de las presentaciones expuestas durante el primer seminario.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) have shown their potentials in various applications, which bring a lot of benefits to users from both research and industrial areas. For many setups, it is envisioned thatWSNs will consist of tens to hundreds of nodes that operate on small batteries. However due to the diversity of the deployed environments and resource constraints on radio communication, sensing ability and energy supply, it is a very challenging issue to plan optimized WSN topology and predict its performance before real deployment. During the network planning phase, the connectivity, coverage, cost, network longevity and service quality should all be considered. Therefore it requires designers coping with comprehensive and interdisciplinary knowledge, including networking, radio engineering, embedded system and so on, in order to efficiently construct a reliable WSN for any specific types of environment. Nowadays there is still a lack of the analysis and experiences to guide WSN designers to efficiently construct WSN topology successfully without many trials. Therefore, simulation is a feasible approach to the quantitative analysis of the performance of wireless sensor networks. However the existing planning algorithms and tools, to some extent, have serious limitations to practically design reliable WSN topology: Only a few of them tackle the 3D deployment issue, and an overwhelming number of works are proposed to place devices in 2D scheme. Without considering the full dimension, the impacts of environment to the performance of WSN are not completely studied, thus the values of evaluated metrics such as connectivity and sensing coverage are not sufficiently accurate to make proper decision. Even fewer planning methods model the sensing coverage and radio propagation by considering the realistic scenario where obstacles exist. Radio signals propagate with multi-path phenomenon in the real world, in which direct paths, reflected paths and diffracted paths contribute to the received signal strength. Besides, obstacles between the path of sensor and objects might block the sensing signals, thus create coverage hole in the application. None of the existing planning algorithms model the network longevity and packet delivery capability properly and practically. They often employ unilateral and unrealistic formulations. The optimization targets are often one-sided in the current works. Without comprehensive evaluation on the important metrics, the performance of planned WSNs can not be reliable and entirely optimized. Modeling of environment is usually time consuming and the cost is very high, while none of the current works figure out any method to model the 3D deployment environment efficiently and accurately. Therefore many researchers are trapped by this issue, and their algorithms can only be evaluated in the same scenario, without the possibility to test the robustness and feasibility for implementations in different environments. In this thesis, we propose a novel planning methodology and an intelligent WSN planning tool to assist WSN designers efficiently planning reliable WSNs. First of all, a new method is proposed to efficiently and automatically model the 3D indoor and outdoor environments. To the best of our knowledge, this is the first time that the advantages of image understanding algorithm are applied to automatically reconstruct 3D outdoor and indoor scenarios for signal propagation and network planning purpose. The experimental results indicate that the proposed methodology is able to accurately recognize different objects from the satellite images of the outdoor target regions and from the scanned floor plan of indoor area. Its mechanism offers users a flexibility to reconstruct different types of environment without any human interaction. Thereby it significantly reduces human efforts, cost and time spent on reconstructing a 3D geographic database and allows WSN designers concentrating on the planning issues. Secondly, an efficient ray-tracing engine is developed to accurately and practically model the radio propagation and sensing signal on the constructed 3D map. The engine contributes on efficiency and accuracy to the estimated results. By using image processing concepts, including the kd-tree space division algorithm and modified polar sweep algorithm, the rays are traced efficiently without detecting all the primitives in the scene. The radio propagation model iv is proposed, which emphasizes not only the materials of obstacles but also their locations along the signal path. The sensing signal of sensor nodes, which is sensitive to the obstacles, is benefit from the ray-tracing algorithm via obstacle detection. The performance of this modelling method is robust and accurate compared with conventional methods, and experimental results imply that this methodology is suitable for both outdoor urban scenes and indoor environments. Moreover, it can be applied to either GSM communication or ZigBee protocol by varying frequency parameter of the radio propagation model. Thirdly, WSN planning method is proposed to tackle the above mentioned challenges and efficiently deploy reliable WSNs. More metrics (connectivity, coverage, cost, lifetime, packet latency and packet drop rate) are modeled more practically compared with other works. Especially 3D ray tracing method is used to model the radio link and sensing signal which are sensitive to the obstruction of obstacles; network routing is constructed by using AODV protocol; the network longevity, packet delay and packet drop rate are obtained via simulating practical events in WSNet simulator, which to the best of our knowledge, is the first time that network simulator is involved in a planning algorithm. Moreover, a multi-objective optimization algorithm is developed to cater for the characteristics of WSNs. The capability of providing multiple optimized solutions simultaneously allows users making their own decisions accordingly, and the results are more comprehensively optimized compared with other state-of-the-art algorithms. iMOST is developed by integrating the introduced algorithms, to assist WSN designers efficiently planning reliable WSNs for different configurations. The abbreviated name iMOST stands for an Intelligent Multi-objective Optimization Sensor network planning Tool. iMOST contributes on: (1) Convenient operation with a user-friendly vision system; (2) Efficient and automatic 3D database reconstruction and fast 3D objects design for both indoor and outdoor environments; (3) It provides multiple multi-objective optimized 3D deployment solutions and allows users to configure the network properties, hence it can adapt to various WSN applications; (4) Deployment solutions in the 3D space and the corresponding evaluated performance are visually presented to users; and (5) The Node Placement Module of iMOST is available online as well as the source code of the other two rebuilt heuristics. Therefore WSN designers will be benefit from v this tool on efficiently constructing environment database, practically and efficiently planning reliable WSNs for both outdoor and indoor applications. With the open source codes, they are also able to compare their developed algorithms with ours to contribute to this academic field. Finally, solid real results are obtained for both indoor and outdoor WSN planning. Deployments have been realized for both indoor and outdoor environments based on the provided planning solutions. The measured results coincide well with the estimated results. The proposed planning algorithm is adaptable according to the WSN designer’s desirability and configuration, and it offers flexibility to plan small and large scale, indoor and outdoor 3D deployments. The thesis is organized in 7 chapters. In Chapter 1, WSN applications and motivations of this work are introduced, the state-of-the-art planning algorithms and tools are reviewed, challenges are stated out and the proposed methodology is briefly introduced. In Chapter 2, the proposed 3D environment reconstruction methodology is introduced and its performance is evaluated for both outdoor and indoor environment. The developed ray-tracing engine and proposed radio propagation modelling method are described in details in Chapter 3, their performances are evaluated in terms of computation efficiency and accuracy. Chapter 4 presents the modelling of important metrics of WSNs and the proposed multi-objective optimization planning algorithm, the performance is compared with the other state-of-the-art planning algorithms. The intelligent WSN planning tool iMOST is described in Chapter 5. RealWSN deployments are prosecuted based on the planned solutions for both indoor and outdoor scenarios, important data are measured and results are analysed in Chapter 6. Chapter 7 concludes the thesis and discusses about future works. vi Resumen en Castellano Las redes de sensores inalámbricas (en inglés Wireless Sensor Networks, WSNs) han demostrado su potencial en diversas aplicaciones que aportan una gran cantidad de beneficios para el campo de la investigación y de la industria. Para muchas configuraciones se prevé que las WSNs consistirán en decenas o cientos de nodos que funcionarán con baterías pequeñas. Sin embargo, debido a la diversidad de los ambientes para desplegar las redes y a las limitaciones de recursos en materia de comunicación de radio, capacidad de detección y suministro de energía, la planificación de la topología de la red y la predicción de su rendimiento es un tema muy difícil de tratar antes de la implementación real. Durante la fase de planificación del despliegue de la red se deben considerar aspectos como la conectividad, la cobertura, el coste, la longevidad de la red y la calidad del servicio. Por lo tanto, requiere de diseñadores con un amplio e interdisciplinario nivel de conocimiento que incluye la creación de redes, la ingeniería de radio y los sistemas embebidos entre otros, con el fin de construir de manera eficiente una WSN confiable para cualquier tipo de entorno. Hoy en día todavía hay una falta de análisis y experiencias que orienten a los diseñadores de WSN para construir las topologías WSN de manera eficiente sin realizar muchas pruebas. Por lo tanto, la simulación es un enfoque viable para el análisis cuantitativo del rendimiento de las redes de sensores inalámbricos. Sin embargo, los algoritmos y herramientas de planificación existentes tienen, en cierta medida, serias limitaciones para diseñar en la práctica una topología fiable de WSN: Sólo unos pocos abordan la cuestión del despliegue 3D mientras que existe una gran cantidad de trabajos que colocan los dispositivos en 2D. Si no se analiza la dimensión completa (3D), los efectos del entorno en el desempeño de WSN no se estudian por completo, por lo que los valores de los parámetros evaluados, como la conectividad y la cobertura de detección, no son lo suficientemente precisos para tomar la decisión correcta. Aún en menor medida los métodos de planificación modelan la cobertura de los sensores y la propagación de la señal de radio teniendo en cuenta un escenario realista donde existan obstáculos. Las señales de radio en el mundo real siguen una propagación multicamino, en la que los caminos directos, los caminos reflejados y los caminos difractados contribuyen a la intensidad de la señal recibida. Además, los obstáculos entre el recorrido del sensor y los objetos pueden bloquear las señales de detección y por lo tanto crear áreas sin cobertura en la aplicación. Ninguno de los algoritmos de planificación existentes modelan el tiempo de vida de la red y la capacidad de entrega de paquetes correctamente y prácticamente. A menudo se emplean formulaciones unilaterales y poco realistas. Los objetivos de optimización son a menudo tratados unilateralmente en los trabajos actuales. Sin una evaluación exhaustiva de los parámetros importantes, el rendimiento previsto de las redes inalámbricas de sensores no puede ser fiable y totalmente optimizado. Por lo general, el modelado del entorno conlleva mucho tiempo y tiene un coste muy alto, pero ninguno de los trabajos actuales propone algún método para modelar el entorno de despliegue 3D con eficiencia y precisión. Por lo tanto, muchos investigadores están limitados por este problema y sus algoritmos sólo se pueden evaluar en el mismo escenario, sin la posibilidad de probar la solidez y viabilidad para las implementaciones en diferentes entornos. En esta tesis, se propone una nueva metodología de planificación así como una herramienta inteligente de planificación de redes de sensores inalámbricas para ayudar a los diseñadores a planificar WSNs fiables de una manera eficiente. En primer lugar, se propone un nuevo método para modelar demanera eficiente y automática los ambientes interiores y exteriores en 3D. Según nuestros conocimientos hasta la fecha, esta es la primera vez que las ventajas del algoritmo de _image understanding_se aplican para reconstruir automáticamente los escenarios exteriores e interiores en 3D para analizar la propagación de la señal y viii la planificación de la red. Los resultados experimentales indican que la metodología propuesta es capaz de reconocer con precisión los diferentes objetos presentes en las imágenes satelitales de las regiones objetivo en el exterior y de la planta escaneada en el interior. Su mecanismo ofrece a los usuarios la flexibilidad para reconstruir los diferentes tipos de entornos sin ninguna interacción humana. De este modo se reduce considerablemente el esfuerzo humano, el coste y el tiempo invertido en la reconstrucción de una base de datos geográfica con información 3D, permitiendo así que los diseñadores se concentren en los temas de planificación. En segundo lugar, se ha desarrollado un motor de trazado de rayos (en inglés ray tracing) eficiente para modelar con precisión la propagación de la señal de radio y la señal de los sensores en el mapa 3D construido. El motor contribuye a la eficiencia y la precisión de los resultados estimados. Mediante el uso de los conceptos de procesamiento de imágenes, incluyendo el algoritmo del árbol kd para la división del espacio y el algoritmo _polar sweep_modificado, los rayos se trazan de manera eficiente sin la detección de todas las primitivas en la escena. El modelo de propagación de radio que se propone no sólo considera los materiales de los obstáculos, sino también su ubicación a lo largo de la ruta de señal. La señal de los sensores de los nodos, que es sensible a los obstáculos, se ve beneficiada por la detección de objetos llevada a cabo por el algoritmo de trazado de rayos. El rendimiento de este método de modelado es robusto y preciso en comparación con los métodos convencionales, y los resultados experimentales indican que esta metodología es adecuada tanto para escenas urbanas al aire libre como para ambientes interiores. Por otra parte, se puede aplicar a cualquier comunicación GSM o protocolo ZigBee mediante la variación de la frecuencia del modelo de propagación de radio. En tercer lugar, se propone un método de planificación de WSNs para hacer frente a los desafíos mencionados anteriormente y desplegar redes de sensores fiables de manera eficiente. Se modelan más parámetros (conectividad, cobertura, coste, tiempo de vida, la latencia de paquetes y tasa de caída de paquetes) en comparación con otros trabajos. Especialmente el método de trazado de rayos 3D se utiliza para modelar el enlace de radio y señal de los sensores que son sensibles a la obstrucción de obstáculos; el enrutamiento de la red se construye utilizando el protocolo AODV; la longevidad de la red, retardo de paquetes ix y tasa de abandono de paquetes se obtienen a través de la simulación de eventos prácticos en el simulador WSNet, y según nuestros conocimientos hasta la fecha, es la primera vez que simulador de red está implicado en un algoritmo de planificación. Por otra parte, se ha desarrollado un algoritmo de optimización multi-objetivo para satisfacer las características de las redes inalámbricas de sensores. La capacidad de proporcionar múltiples soluciones optimizadas de forma simultánea permite a los usuarios tomar sus propias decisiones en consecuencia, obteniendo mejores resultados en comparación con otros algoritmos del estado del arte. iMOST se desarrolla mediante la integración de los algoritmos presentados, para ayudar de forma eficiente a los diseñadores en la planificación de WSNs fiables para diferentes configuraciones. El nombre abreviado iMOST (Intelligent Multi-objective Optimization Sensor network planning Tool) representa una herramienta inteligente de planificación de redes de sensores con optimización multi-objetivo. iMOST contribuye en: (1) Operación conveniente con una interfaz de fácil uso, (2) Reconstrucción eficiente y automática de una base de datos con información 3D y diseño rápido de objetos 3D para ambientes interiores y exteriores, (3) Proporciona varias soluciones de despliegue optimizadas para los multi-objetivo en 3D y permite a los usuarios configurar las propiedades de red, por lo que puede adaptarse a diversas aplicaciones de WSN, (4) las soluciones de implementación en el espacio 3D y el correspondiente rendimiento evaluado se presentan visualmente a los usuarios, y (5) El _Node Placement Module_de iMOST está disponible en línea, así como el código fuente de las otras dos heurísticas de planificación. Por lo tanto los diseñadores WSN se beneficiarán de esta herramienta para la construcción eficiente de la base de datos con información del entorno, la planificación práctica y eficiente de WSNs fiables tanto para aplicaciones interiores y exteriores. Con los códigos fuente abiertos, son capaces de comparar sus algoritmos desarrollados con los nuestros para contribuir a este campo académico. Por último, se obtienen resultados reales sólidos tanto para la planificación de WSN en interiores y exteriores. Los despliegues se han realizado tanto para ambientes de interior y como para ambientes de exterior utilizando las soluciones de planificación propuestas. Los resultados medidos coinciden en gran medida con los resultados estimados. El algoritmo de planificación x propuesto se adapta convenientemente al deiseño de redes de sensores inalámbricas, y ofrece flexibilidad para planificar los despliegues 3D a pequeña y gran escala tanto en interiores como en exteriores. La tesis se estructura en 7 capítulos. En el Capítulo 1, se presentan las aplicaciones de WSN y motivaciones de este trabajo, se revisan los algoritmos y herramientas de planificación del estado del arte, se presentan los retos y se describe brevemente la metodología propuesta. En el Capítulo 2, se presenta la metodología de reconstrucción de entornos 3D propuesta y su rendimiento es evaluado tanto para espacios exteriores como para espacios interiores. El motor de trazado de rayos desarrollado y el método de modelado de propagación de radio propuesto se describen en detalle en el Capítulo 3, evaluándose en términos de eficiencia computacional y precisión. En el Capítulo 4 se presenta el modelado de los parámetros importantes de las WSNs y el algoritmo de planificación de optimización multi-objetivo propuesto, el rendimiento se compara con los otros algoritmos de planificación descritos en el estado del arte. La herramienta inteligente de planificación de redes de sensores inalámbricas, iMOST, se describe en el Capítulo 5. En el Capítulo 6 se llevan a cabo despliegues reales de acuerdo a las soluciones previstas para los escenarios interiores y exteriores, se miden los datos importantes y se analizan los resultados. En el Capítulo 7 se concluye la tesis y se discute acerca de los trabajos futuros.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El proyecto geotécnico de columnas de grava tiene todas las incertidumbres asociadas a un proyecto geotécnico y además hay que considerar las incertidumbres inherentes a la compleja interacción entre el terreno y la columna, la puesta en obra de los materiales y el producto final conseguido. Este hecho es común a otros tratamientos del terreno cuyo objetivo sea, en general, la mejora “profunda”. Como los métodos de fiabilidad (v.gr., FORM, SORM, Monte Carlo, Simulación Direccional) dan respuesta a la incertidumbre de forma mucho más consistente y racional que el coeficiente de seguridad tradicional, ha surgido un interés reciente en la aplicación de técnicas de fiabilidad a la ingeniería geotécnica. Si bien la aplicación concreta al proyecto de técnicas de mejora del terreno no es tan extensa. En esta Tesis se han aplicado las técnicas de fiabilidad a algunos aspectos del proyecto de columnas de grava (estimación de asientos, tiempos de consolidación y aumento de la capacidad portante) con el objetivo de efectuar un análisis racional del proceso de diseño, considerando los efectos que tienen la incertidumbre y la variabilidad en la seguridad del proyecto, es decir, en la probabilidad de fallo. Para alcanzar este objetivo se ha utilizado un método analítico avanzado debido a Castro y Sagaseta (2009), que mejora notablemente la predicción de las variables involucradas en el diseño del tratamiento y su evolución temporal (consolidación). Se ha estudiado el problema del asiento (valor y tiempo de consolidación) en el contexto de la incertidumbre, analizando dos modos de fallo: i) el primer modo representa la situación en la que es posible finalizar la consolidación primaria, parcial o totalmente, del terreno mejorado antes de la ejecución de la estructura final, bien sea por un precarga o porque la carga se pueda aplicar gradualmente sin afectar a la estructura o instalación; y ii) por otra parte, el segundo modo de fallo implica que el terreno mejorado se carga desde el instante inicial con la estructura definitiva o instalación y se comprueba que el asiento final (transcurrida la consolidación primaria) sea lo suficientemente pequeño para que pueda considerarse admisible. Para trabajar con valores realistas de los parámetros geotécnicos, los datos se han obtenido de un terreno real mejorado con columnas de grava, consiguiendo, de esta forma, un análisis de fiabilidad más riguroso. La conclusión más importante, obtenida del análisis de este caso particular, es la necesidad de precargar el terreno mejorado con columnas de grava para conseguir que el asiento ocurra de forma anticipada antes de la aplicación de la carga correspondiente a la estructura definitiva. De otra forma la probabilidad de fallo es muy alta, incluso cuando el margen de seguridad determinista pudiera ser suficiente. En lo que respecta a la capacidad portante de las columnas, existen un buen número de métodos de cálculo y de ensayos de carga (tanto de campo como de laboratorio) que dan predicciones dispares del valor de la capacidad última de las columnas de grava. En las mallas indefinidas de columnas, los resultados del análisis de fiabilidad han confirmado las consideraciones teóricas y experimentales existentes relativas a que no se produce fallo por estabilidad, obteniéndose una probabilidad de fallo prácticamente nula para este modo de fallo. Sin embargo, cuando se analiza, en el contexto de la incertidumbre, la capacidad portante de pequeños grupos de columnas bajo zapatas se ha obtenido, para un caso con unos parámetros geotécnicos típicos, que la probabilidad de fallo es bastante alta, por encima de los umbrales normalmente admitidos para Estados Límite Últimos. Por último, el trabajo de recopilación sobre los métodos de cálculo y de ensayos de carga sobre la columna aislada ha permitido generar una base de datos suficientemente amplia como para abordar una actualización bayesiana de los métodos de cálculo de la columna de grava aislada. El marco bayesiano de actualización ha resultado de utilidad en la mejora de las predicciones de la capacidad última de carga de la columna, permitiendo “actualizar” los parámetros del modelo de cálculo a medida que se dispongan de ensayos de carga adicionales para un proyecto específico. Constituye una herramienta valiosa para la toma de decisiones en condiciones de incertidumbre ya que permite comparar el coste de los ensayos adicionales con el coste de una posible rotura y , en consecuencia, decidir si es procedente efectuar dichos ensayos. The geotechnical design of stone columns has all the uncertainties associated with a geotechnical project and those inherent to the complex interaction between the soil and the column, the installation of the materials and the characteristics of the final (as built) column must be considered. This is common to other soil treatments aimed, in general, to “deep” soil improvement. Since reliability methods (eg, FORM, SORM, Monte Carlo, Directional Simulation) deals with uncertainty in a much more consistent and rational way than the traditional safety factor, recent interest has arisen in the application of reliability techniques to geotechnical engineering. But the specific application of these techniques to soil improvement projects is not as extensive. In this thesis reliability techniques have been applied to some aspects of stone columns design (estimated settlements, consolidation times and increased bearing capacity) to make a rational analysis of the design process, considering the effects of uncertainty and variability on the safety of the project, i.e., on the probability of failure. To achieve this goal an advanced analytical method due to Castro and Sagaseta (2009), that significantly improves the prediction of the variables involved in the design of treatment and its temporal evolution (consolidation), has been employed. This thesis studies the problem of stone column settlement (amount and speed) in the context of uncertainty, analyzing two failure modes: i) the first mode represents the situation in which it is possible to cause primary consolidation, partial or total, of the improved ground prior to implementation of the final structure, either by a pre-load or because the load can be applied gradually or programmed without affecting the structure or installation; and ii) on the other hand, the second mode implies that the improved ground is loaded from the initial instant with the final structure or installation, expecting that the final settlement (elapsed primary consolidation) is small enough to be allowable. To work with realistic values of geotechnical parameters, data were obtained from a real soil improved with stone columns, hence producing a more rigorous reliability analysis. The most important conclusion obtained from the analysis of this particular case is the need to preload the stone columns-improved soil to make the settlement to occur before the application of the load corresponding to the final structure. Otherwise the probability of failure is very high, even when the deterministic safety margin would be sufficient. With respect to the bearing capacity of the columns, there are numerous methods of calculation and load tests (both for the field and the laboratory) giving different predictions of the ultimate capacity of stone columns. For indefinite columns grids, the results of reliability analysis confirmed the existing theoretical and experimental considerations that no failure occurs due to the stability failure mode, therefore resulting in a negligible probability of failure. However, when analyzed in the context of uncertainty (for a case with typical geotechnical parameters), results show that the probability of failure due to the bearing capacity failure mode of a group of columns is quite high, above thresholds usually admitted for Ultimate Limit States. Finally, the review of calculation methods and load tests results for isolated columns, has generated a large enough database, that allowed a subsequent Bayesian updating of the methods for calculating the bearing capacity of isolated stone columns. The Bayesian updating framework has been useful to improve the predictions of the ultimate load capacity of the column, allowing to "update" the parameters of the calculation model as additional load tests become available for a specific project. Moreover, it is a valuable tool for decision making under uncertainty since it is possible to compare the cost of further testing to the cost of a possible failure and therefore to decide whether it is appropriate to perform such tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Habitualmente se considera que en los inventarios forestales realizados con tecnología LiDAR no existe error de muestreo. El error en la estimación de las variables se asimila a la bondad de ajuste obtenida en la regresión que se usa para la predicción de dichas variables. Sin embargo el inventario LiDAR puede ser considerado como un muestreo en dos fases con estimador de regresión, por lo que es posible calcular el error que se comete en dicho inventario. Se presenta como aplicación el inventario de los montes de Utilidad Pública números 193 y 194 de la provincia de Soria, poblados principalmente con masas de repoblación de Pinus sylvestris. Se ha trabajado con una muestra de 50 parcelas circulares de 11 metros de radio y una densidad media de datos LiDAR de 2 puntos/m2. Para la estimación del volumen maderable (V) se ha ajustado una regresión lineal con un coeficiente de determinación R2=0,8985. Los resultados muestran que los errores obtenidos en un inventario LiDAR son sustancialmente menores que los obtenidos en un muestreo sistemático por parcelas (5,1% frente a 14.9% en el caso analizado). También se observa que se consigue un error de muestreo mínimo para la estimación del volumen cuando la regresión se realiza pixeles de tamaño igual al de la parcela de muestreo en campo y que para minimizar el error a nivel de rodal es necesario maximizar el rango de aplicación de la regresión.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el proceso de vinificación un aspecto de vital importancia es el control periódico de la concentración de azúcares durante la etapa de fermentación del mosto. Los métodos tradicionales de análisis en laboratorio, si bien son suficientemente precisos, conllevan un importante gasto de material y tiempo, y sólo proporcionan medidas discretas a lo largo del proceso de fermentación. En investigaciones recientes se ha aplicado el NIR espectrofotometría en el infrarrojo cercano a la predicción de los azúcares en distintos productos agrícolas (Bellón, V. l993, en manzanas; Barreiro. P. 1996, en tomates. El objetivo de este trabajo fue el desarrollo de un modelo de estimación del contenido de azúcares disueltos en el mosto, y el establecimiento de un sistema de predicción de la evolución de la fermentación. Mediante un espectrofotómetro con detector en el área del infrarrojo cercano (NIR) y un la medida de la transmisión de luz conducida por fibras ópticas, se adquirieron los datos espectrales de los mostos y vinos en fermentación controlada. Análisis matemáticos y estadísticos posteriores (transformación de los espectros, análisis de componentes principales y regresiones multilineales condujeron al establecimiento del modelo de estimación de los azúcares (con precisión de ±2,5 g/1). Los modelos desarrollados permiten la implantación de un sistema de toma de datos continuo en las cubas de fermentación de una bodega, para el control sistemático en tiempo real del proceso de elaboración del vino.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this Thesis is to get in deep in the use of models (conceptual and numerical), as a prediction and analytical tool for hydrogeological studies, mainly from point of view of the mining drainage. In the first place, are developed the basic concepts and the parametric variations range are developed, usually used in the modelization of underground f10w and particle transport, and also the more recommended modelization process, analysing step by step each of its sequences, developed based in the experience of the author, contrasted against the available bibliography. Following MODFLOW is described, as a modelization tool, taking into account the advantages that its more common pre/post-treatment software have (Processing MODFLOW, Mod CAD and Visual MODFLOW). In third place, are introduced the criterions and required parameters to develop a conceptual model, numerical discretization, definition of the boundary and initial conditions, as well as all those factors which affects to the system (antropic or natural), developing the creation process, data introduction, execution of morlel, convergence criterions and calibration and obtaining result, natural of Visual MODFLOUI. Next, five practical cases are analysed, in which the author has been applied MODFLOW, and the different pre/post-treatment software (Processing MODFLOW, Mod CAD and Visual MODFLOW), describing for each one, the objectives, the conceptual model defined, discretization, the parametric definition, sensibility analysis, results reached and future states prediction. In fifth place, are presented a program developed by the author which allow to improve the facilities offered by Mod CAD and Visual MODFLOW, expanding modelization possibilities and connection to other computers. Next step it is presented a series of solutions to the most typical problems which could appear during the modelization with MODFLOW. Finally, the conclusions and recommendation readied are exposed, with the purpose to help in the developing of hydrogeological models both conceptuals and numericals. RESUMEN El objetivo de esta Tesis es profundizar en el empleo de modelos (conceptuales y numéricos), como herramienta de predicción y análisis en estudios hidrogeológicos, fundamentalmente desde el punto de vista de drenaje minero. En primer lugar, se desarrollan los conceptos básicos y los rangos de variación paramétrica, habituales en la modelización de flujos subterráneos y transporte de partículas, así como el proceso de modelización más recomendado, analizando paso a paso cada una de sus secuencias, desarrollado en base a la experiencia del autor, contrastado con la bibliografía disponible. Seguidamente se describe MODFLOW como herramienta de modelización, valorando las ventajas que presentan sus software de pre/post-tratamiento más comunes (Proccesing MODFLOW, Mod CAD y Visual MODFLOW). En tercer lugar, se introducen los criterios y parámetros precisos para desarrollar un modelo conceptual, discretización numérica, definición de las condiciones de contorno e iniciales, así como todos aquellos factores que afectan al sistema (antrópicos o naturales), desarrollando el proceso de creación, introducción de datos, ejecución del modelo, criterios de convergencia y calibración, y obtención de resultados, propios de Visual MODFLOW. A continuación, se analizan cinco casos prácticos, donde el autor ha aplicado MODFLOW, así como diferentes software de pre/post-tratamiento (Proccesing MODFLOW, Mod CAD y Visual MODFLOW), describiendo para cada uno, el objetivo marcado, modelo conceptual definido, discretización, definición paramétrica, análisis de sensibilidad, resultados alcanzados y predicción de estados futuros. En quinto lugar, se presenta un programa desarrollado por el autor, que permite mejorar las prestaciones ofrecidas por MODFLOW y Visual MODFLOW, ampliando las posibilidades de modelización y conexión con otros ordenadores. Seguidamente se plantean una serie de soluciones a los problemas más típicos que pueden producirse durante la modelización con MODFLOW. Por último, se exponen las conclusiones y recomendaciones alcanzadas, con el fin de auxiliar el desarrollo del desarrollo de modelos hidrogeológicos, tanto conceptuales como numéricos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta tesis presenta un novedoso marco de referencia para el análisis y optimización del retardo de codificación y descodificación para vídeo multivista. El objetivo de este marco de referencia es proporcionar una metodología sistemática para el análisis del retardo en codificadores y descodificadores multivista y herramientas útiles en el diseño de codificadores/descodificadores para aplicaciones con requisitos de bajo retardo. El marco de referencia propuesto caracteriza primero los elementos que tienen influencia en el comportamiento del retardo: i) la estructura de predicción multivista, ii) el modelo hardware del codificador/descodificador y iii) los tiempos de proceso de cuadro. En segundo lugar, proporciona algoritmos para el cálculo del retardo de codificación/ descodificación de cualquier estructura arbitraria de predicción multivista. El núcleo de este marco de referencia consiste en una metodología para el análisis del retardo de codificación/descodificación multivista que es independiente de la arquitectura hardware del codificador/descodificador, completada con un conjunto de modelos que particularizan este análisis del retardo con las características de la arquitectura hardware del codificador/descodificador. Entre estos modelos, aquellos basados en teoría de grafos adquieren especial relevancia debido a su capacidad de desacoplar la influencia de los diferentes elementos en el comportamiento del retardo en el codificador/ descodificador, mediante una abstracción de su capacidad de proceso. Para revelar las posibles aplicaciones de este marco de referencia, esta tesis presenta algunos ejemplos de su utilización en problemas de diseño que afectan a codificadores y descodificadores multivista. Este escenario de aplicación cubre los siguientes casos: estrategias para el diseño de estructuras de predicción que tengan en consideración requisitos de retardo además del comportamiento tasa-distorsión; diseño del número de procesadores y análisis de los requisitos de velocidad de proceso en codificadores/ descodificadores multivista dado un retardo objetivo; y el análisis comparativo del comportamiento del retardo en codificadores multivista con diferentes capacidades de proceso e implementaciones hardware. ABSTRACT This thesis presents a novel framework for the analysis and optimization of the encoding and decoding delay for multiview video. The objective of this framework is to provide a systematic methodology for the analysis of the delay in multiview encoders and decoders and useful tools in the design of multiview encoders/decoders for applications with low delay requirements. The proposed framework characterizes firstly the elements that have an influence in the delay performance: i) the multiview prediction structure ii) the hardware model of the encoder/decoder and iii) frame processing times. Secondly, it provides algorithms for the computation of the encoding/decoding delay of any arbitrary multiview prediction structure. The core of this framework consists in a methodology for the analysis of the multiview encoding/decoding delay that is independent of the hardware architecture of the encoder/decoder, which is completed with a set of models that particularize this delay analysis with the characteristics of the hardware architecture of the encoder/decoder. Among these models, the ones based in graph theory acquire special relevance due to their capacity to detach the influence of the different elements in the delay performance of the encoder/decoder, by means of an abstraction of its processing capacity. To reveal possible applications of this framework, this thesis presents some examples of its utilization in design problems that affect multiview encoders and decoders. This application scenario covers the following cases: strategies for the design of prediction structures that take into consideration delay requirements in addition to the rate-distortion performance; design of number of processors and analysis of processor speed requirements in multiview encoders/decoders given a target delay; and comparative analysis of the encoding delay performance of multiview encoders with different processing capabilities and hardware implementations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta tesis constituye un gran avance en el conocimiento del estudio y análisis de inestabilidades hidrodinámicas desde un punto de vista físico y teórico, como consecuencia de haber desarrollado innovadoras técnicas para la resolución computacional eficiente y precisa de la parte principal del espectro correspondiente a los problemas de autovalores (EVP) multidimensionales que gobiernan la inestabilidad de flujos con dos o tres direcciones espaciales inhomogéneas, denominados problemas de estabilidad global lineal. En el contexto del trabajo de desarrollo de herramientas computacionales presentado en la tesis, la discretización mediante métodos de diferencias finitas estables de alto orden de los EVP bidimensionales y tridimensionales que se derivan de las ecuaciones de Navier-Stokes linealizadas sobre flujos con dos o tres direcciones espaciales inhomogéneas, ha permitido una aceleración de cuatro órdenes de magnitud en su resolución. Esta mejora de eficiencia numérica se ha conseguido gracias al hecho de que usando estos esquemas de diferencias finitas, técnicas eficientes de resolución de problemas lineales son utilizables, explotando el alto nivel de dispersión o alto número de elementos nulos en las matrices involucradas en los problemas tratados. Como más notable consecuencia cabe destacar que la resolución de EVPs multidimensionales de inestabilidad global, que hasta la fecha necesitaban de superordenadores, se ha podido realizar en ordenadores de sobremesa. Además de la solución de problemas de estabilidad global lineal, el mencionado desarrollo numérico facilitó la extensión de las ecuaciones de estabilidad parabolizadas (PSE) lineales y no lineales para analizar la inestabilidad de flujos que dependen fuertemente en dos direcciones espaciales y suavemente en la tercera con las ecuaciones de estabilidad parabolizadas tridimensionales (PSE-3D). Precisamente la capacidad de extensión del novedoso algoritmo PSE-3D para el estudio de interacciones no lineales de los modos de estabilidad, desarrollado íntegramente en esta tesis, permite la predicción de transición en flujos complejos de gran interés industrial y por lo tanto extiende el concepto clásico de PSE, el cuál ha sido empleado exitosamente durante las pasadas tres décadas en el mismo contexto para problemas de capa límite bidimensional. Típicos ejemplos de flujos incompresibles se han analizado en este trabajo sin la necesidad de recurrir a restrictivas presuposiciones usadas en el pasado. Se han estudiado problemas vorticales como es el caso de un vórtice aislado o sistemas de vórtices simulando la estela de alas, en los que la homogeneidad axial no se impone y así se puede considerar la difusión viscosa del flujo. Además, se ha estudiado el chorro giratorio turbulento, cuya inestabilidad se utiliza para mejorar las características de funcionamiento de combustores. En la tesis se abarcan adicionalmente problemas de flujos compresibles. Se presenta el estudio de inestabilidad de flujos de borde de ataque a diferentes velocidades de vuelo. También se analiza la estela formada por un elemento rugoso aislado en capa límite supersónica e hipersónica, mostrando excelentes comparaciones con resultados obtenidos mediante simulación numérica directa. Finalmente, nuevas inestabilidades se han identificado en el flujo hipersónico a Mach 7 alrededor de un cono elíptico que modela el vehículo de pruebas en vuelo HIFiRE-5. Los resultados comparan favorablemente con experimentos en vuelo, lo que subraya aún más el potencial de las metodologías de análisis de estabilidad desarrolladas en esta tesis. ABSTRACT The present thesis constitutes a step forward in advancing the frontiers of knowledge of fluid flow instability from a physical point of view, as a consequence of having been successful in developing groundbreaking methodologies for the efficient and accurate computation of the leading part of the spectrum pertinent to multi-dimensional eigenvalue problems (EVP) governing instability of flows with two or three inhomogeneous spatial directions. In the context of the numerical work presented in this thesis, the discretization of the spatial operator resulting from linearization of the Navier-Stokes equations around flows with two or three inhomogeneous spatial directions by variable-high-order stable finite-difference methods has permitted a speedup of four orders of magnitude in the solution of the corresponding two- and three-dimensional EVPs. This improvement of numerical performance has been achieved thanks to the high-sparsity level offered by the high-order finite-difference schemes employed for the discretization of the operators. This permitted use of efficient sparse linear algebra techniques without sacrificing accuracy and, consequently, solutions being obtained on typical workstations, as opposed to the previously employed supercomputers. Besides solution of the two- and three-dimensional EVPs of global linear instability, this development paved the way for the extension of the (linear and nonlinear) Parabolized Stability Equations (PSE) to analyze instability of flows which depend in a strongly-coupled inhomogeneous manner on two spatial directions and weakly on the third. Precisely the extensibility of the novel PSE-3D algorithm developed in the framework of the present thesis to study nonlinear flow instability permits transition prediction in flows of industrial interest, thus extending the classic PSE concept which has been successfully employed in the same context to boundary-layer type of flows over the last three decades. Typical examples of incompressible flows, the instability of which was analyzed in the present thesis without the need to resort to the restrictive assumptions used in the past, range from isolated vortices, and systems thereof, in which axial homogeneity is relaxed to consider viscous diffusion, as well as turbulent swirling jets, the instability of which is exploited in order to improve flame-holding properties of combustors. The instability of compressible subsonic and supersonic leading edge flows has been solved, and the wake of an isolated roughness element in a supersonic and hypersonic boundary-layer has also been analyzed with respect to its instability: excellent agreement with direct numerical simulation results has been obtained in all cases. Finally, instability analysis of Mach number 7 ow around an elliptic cone modeling the HIFiRE-5 flight test vehicle has unraveled flow instabilities near the minor-axis centerline, results comparing favorably with flight test predictions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La simulación de procesos de mecanizado supone hoy en día una herramienta de gran interés para predecir el comportamiento de la herramienta en las operaciones de corte y por lo tanto, la posibilidad de optimizar estas operaciones, permitiendo alcanzar una mayor productividad en los procesos de fabricación. Los algoritmos que actualmente se están utilizando para la predicción de fuerzas de corte son variados y su eficiencia diferente. La mayoría de los algoritmos desarrollados se centran en determinar la evolución de las fuerzas de corte en cada vuelta de la herramienta sin variar las condiciones de mecanizado en este intervalo. En este sentido, se ha desarrollado un algoritmo para fresado periférico basado en el espesor de viruta medio, que permite simplificar el algoritmo de estimación de fuerzas y ser ejecutado con una mayor velocidad, manteniendo el mismo nivel de precisión en la estimación. Con este nuevo modelo es posible realizar la estimación de fuerzas en fresado no solo cuando las condiciones de corte son uniformes sino también cuando se producen cambios en la configuración del corte.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El objetivo de este trabajo es evaluar el potencial de la espectroscopía en el infrarrojo cercano combinada con análisis multivariante para identificar el origen geográfico de planchas y tapones de corcho natural. Se utilizaron tres colectivos, el primero formado por 479 planchas de Marruecos, Portugal y España (escala internacional), el segundo por 179 planchas de Andalucía, Cataluña y Extremadura (escala nacional) y el tercero por 90 tapones de Andalucía y Cataluña. Se obtuvieron los datos espectroscópicos de las planchas y tapones en la sección transversal y de los tapones las secciones tangencial y radial, con un espectrofotómetro FossNIRSSystems 6500SYII mediante sonda de fibra óptica en la modalidad de reflectancia remota y longitudes de onda 400-2500 nm. Se obtuvieron diferentes modelos discriminantes mediante PLS2 con el 70% de las muestras, utilizándose el otro 30% en la validación. Se clasificaron correctamente el 98% de las planchas a escala internacional, el 95% de las planchas a escala nacional y el 90% de los tapones (sección transversal), en la calibración y en la validación. Los resultados obtenidos demuestran el potencial de la tecnología NIRS para utilizarse como método rápido y exacto en la predicción de la procedencia geográfica del corcho en plancha y tapón.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El comportamiento estructural de las presas de embalse es difícil de predecir con precisión. Los modelos numéricos para el cálculo estructural resuelven bien las ecuaciones de la mecánica de medios continuos, pero están sujetos a una gran incertidumbre en cuanto a la caracterización de los materiales, especialmente en lo que respecta a la cimentación. Así, es difícil discernir si un estado que se aleja en cierta medida de la normalidad supone o no una situación de riesgo estructural. Por el contrario, muchas de las presas en operación cuentan con un gran número de aparatos de auscultación, que registran la evolución de diversos indicadores como los movimientos, el caudal de filtración, o la presión intersticial, entre otros. Aunque hoy en día hay muchas presas con pocos datos observados, hay una tendencia clara hacia la instalación de un mayor número de aparatos que registran el comportamiento con mayor frecuencia [1]. Como consecuencia, se tiende a disponer de un volumen creciente de datos que reflejan el comportamiento de la presa. En la actualidad, estos datos suelen tratarse con métodos estadísticos para extraer información acerca de la relación entre variables, detectar anomalías y establecer umbrales de emergencia. El modelo general más común es el denominado HST (Hydrostatic-Season-Time), que calcula la predicción de una variable determinada de una presa a partir de una serie de funciones que tienen en cuenta los factores que teóricamente más influyen en la respuesta: la carga del embalse, el efecto térmico (en función de la época del año) y un término irreversible. Puntualmente se han aplicado modelos más complejos, en algunos casos introduciendo un número mayor de variables, como la precipitación [2], y en otros con otras expresiones como la función impulso-respuesta [3]. En otros campos de la ciencia, como la medicina o las telecomunicaciones el volumen de datos es mucho mayor, lo que ha motivado el desarrollo de numerosas herramientas para su tratamiento y para el desarrollo de modelos de predicción. Algunas de ellas, como las redes neuronales, ya han sido aplicadas al caso de la auscultación de presas [4], [5] con resultados prometedores. El trabajo que se presenta es una revisión de las herramientas disponibles en los campos de la minería de datos, inteligencia artificial y estadística avanzada, potencialmente útiles para el análisis de datos de auscultación. Se describen someramente, indicando sus ventajas e inconvenientes. Se presenta además el resultado de aplicar un modelo basado en bosques aleatorios [6] para la predicción del caudal de filtración en un caso piloto. Los bosques aleatorios están basados en los árboles de decisión [7], que son modelos que dividen el conjunto de datos observados en grupos de observaciones “similares”. Posteriormente, se ajusta un modelo sencillo (típicamente lineal, o incluso un valor constante) que se aplica a los nuevos casos pertenecientes a cada grupo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last few years there has been a heightened interest in data treatment and analysis with the aim of discovering hidden knowledge and eliciting relationships and patterns within this data. Data mining techniques (also known as Knowledge Discovery in Databases) have been applied over a wide range of fields such as marketing, investment, fraud detection, manufacturing, telecommunications and health. In this study, well-known data mining techniques such as artificial neural networks (ANN), genetic programming (GP), forward selection linear regression (LR) and k-means clustering techniques, are proposed to the health and sports community in order to aid with resistance training prescription. Appropriate resistance training prescription is effective for developing fitness, health and for enhancing general quality of life. Resistance exercise intensity is commonly prescribed as a percent of the one repetition maximum. 1RM, dynamic muscular strength, one repetition maximum or one execution maximum, is operationally defined as the heaviest load that can be moved over a specific range of motion, one time and with correct performance. The safety of the 1RM assessment has been questioned as such an enormous effort may lead to muscular injury. Prediction equations could help to tackle the problem of predicting the 1RM from submaximal loads, in order to avoid or at least, reduce the associated risks. We built different models from data on 30 men who performed up to 5 sets to exhaustion at different percentages of the 1RM in the bench press action, until reaching their actual 1RM. Also, a comparison of different existing prediction equations is carried out. The LR model seems to outperform the ANN and GP models for the 1RM prediction in the range between 1 and 10 repetitions. At 75% of the 1RM some subjects (n = 5) could perform 13 repetitions with proper technique in the bench press action, whilst other subjects (n = 20) performed statistically significant (p < 0:05) more repetitions at 70% than at 75% of their actual 1RM in the bench press action. Rate of perceived exertion (RPE) seems not to be a good predictor for 1RM when all the sets are performed until exhaustion, as no significant differences (p < 0:05) were found in the RPE at 75%, 80% and 90% of the 1RM. Also, years of experience and weekly hours of strength training are better correlated to 1RM (p < 0:05) than body weight. O'Connor et al. 1RM prediction equation seems to arise from the data gathered and seems to be the most accurate 1RM prediction equation from those proposed in literature and used in this study. Epley's 1RM prediction equation is reproduced by means of data simulation from 1RM literature equations. Finally, future lines of research are proposed related to the problem of the 1RM prediction by means of genetic algorithms, neural networks and clustering techniques. RESUMEN En los últimos años ha habido un creciente interés en el tratamiento y análisis de datos con el propósito de descubrir relaciones, patrones y conocimiento oculto en los mismos. Las técnicas de data mining (también llamadas de \Descubrimiento de conocimiento en bases de datos\) se han aplicado consistentemente a lo gran de un gran espectro de áreas como el marketing, inversiones, detección de fraude, producción industrial, telecomunicaciones y salud. En este estudio, técnicas bien conocidas de data mining como las redes neuronales artificiales (ANN), programación genética (GP), regresión lineal con selección hacia adelante (LR) y la técnica de clustering k-means, se proponen a la comunidad del deporte y la salud con el objetivo de ayudar con la prescripción del entrenamiento de fuerza. Una apropiada prescripción de entrenamiento de fuerza es efectiva no solo para mejorar el estado de forma general, sino para mejorar la salud e incrementar la calidad de vida. La intensidad en un ejercicio de fuerza se prescribe generalmente como un porcentaje de la repetición máxima. 1RM, fuerza muscular dinámica, una repetición máxima o una ejecución máxima, se define operacionalmente como la carga máxima que puede ser movida en un rango de movimiento específico, una vez y con una técnica correcta. La seguridad de las pruebas de 1RM ha sido cuestionada debido a que el gran esfuerzo requerido para llevarlas a cabo puede derivar en serias lesiones musculares. Las ecuaciones predictivas pueden ayudar a atajar el problema de la predicción de la 1RM con cargas sub-máximas y son empleadas con el propósito de eliminar o al menos, reducir los riesgos asociados. En este estudio, se construyeron distintos modelos a partir de los datos recogidos de 30 hombres que realizaron hasta 5 series al fallo en el ejercicio press de banca a distintos porcentajes de la 1RM, hasta llegar a su 1RM real. También se muestra una comparación de algunas de las distintas ecuaciones de predicción propuestas con anterioridad. El modelo LR parece superar a los modelos ANN y GP para la predicción de la 1RM entre 1 y 10 repeticiones. Al 75% de la 1RM algunos sujetos (n = 5) pudieron realizar 13 repeticiones con una técnica apropiada en el ejercicio press de banca, mientras que otros (n = 20) realizaron significativamente (p < 0:05) más repeticiones al 70% que al 75% de su 1RM en el press de banca. El ínndice de esfuerzo percibido (RPE) parece no ser un buen predictor del 1RM cuando todas las series se realizan al fallo, puesto que no existen diferencias signifiativas (p < 0:05) en el RPE al 75%, 80% y el 90% de la 1RM. Además, los años de experiencia y las horas semanales dedicadas al entrenamiento de fuerza están más correlacionadas con la 1RM (p < 0:05) que el peso corporal. La ecuación de O'Connor et al. parece surgir de los datos recogidos y parece ser la ecuación de predicción de 1RM más precisa de aquellas propuestas en la literatura y empleadas en este estudio. La ecuación de predicción de la 1RM de Epley es reproducida mediante simulación de datos a partir de algunas ecuaciones de predicción de la 1RM propuestas con anterioridad. Finalmente, se proponen futuras líneas de investigación relacionadas con el problema de la predicción de la 1RM mediante algoritmos genéticos, redes neuronales y técnicas de clustering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tradicionalmente, el uso de técnicas de análisis de datos ha sido una de las principales vías para el descubrimiento de conocimiento oculto en grandes cantidades de datos, recopilados por expertos en diferentes dominios. Por otra parte, las técnicas de visualización también se han usado para mejorar y facilitar este proceso. Sin embargo, existen limitaciones serias en la obtención de conocimiento, ya que suele ser un proceso lento, tedioso y en muchas ocasiones infructífero, debido a la dificultad de las personas para comprender conjuntos de datos de grandes dimensiones. Otro gran inconveniente, pocas veces tenido en cuenta por los expertos que analizan grandes conjuntos de datos, es la degradación involuntaria a la que someten a los datos durante las tareas de análisis, previas a la obtención final de conclusiones. Por degradación quiere decirse que los datos pueden perder sus propiedades originales, y suele producirse por una reducción inapropiada de los datos, alterando así su naturaleza original y llevando en muchos casos a interpretaciones y conclusiones erróneas que podrían tener serias implicaciones. Además, este hecho adquiere una importancia trascendental cuando los datos pertenecen al dominio médico o biológico, y la vida de diferentes personas depende de esta toma final de decisiones, en algunas ocasiones llevada a cabo de forma inapropiada. Ésta es la motivación de la presente tesis, la cual propone un nuevo framework visual, llamado MedVir, que combina la potencia de técnicas avanzadas de visualización y minería de datos para tratar de dar solución a estos grandes inconvenientes existentes en el proceso de descubrimiento de información válida. El objetivo principal es hacer más fácil, comprensible, intuitivo y rápido el proceso de adquisición de conocimiento al que se enfrentan los expertos cuando trabajan con grandes conjuntos de datos en diferentes dominios. Para ello, en primer lugar, se lleva a cabo una fuerte disminución en el tamaño de los datos con el objetivo de facilitar al experto su manejo, y a la vez preservando intactas, en la medida de lo posible, sus propiedades originales. Después, se hace uso de efectivas técnicas de visualización para representar los datos obtenidos, permitiendo al experto interactuar de forma sencilla e intuitiva con los datos, llevar a cabo diferentes tareas de análisis de datos y así estimular visualmente su capacidad de comprensión. De este modo, el objetivo subyacente se basa en abstraer al experto, en la medida de lo posible, de la complejidad de sus datos originales para presentarle una versión más comprensible, que facilite y acelere la tarea final de descubrimiento de conocimiento. MedVir se ha aplicado satisfactoriamente, entre otros, al campo de la magnetoencefalografía (MEG), que consiste en la predicción en la rehabilitación de lesiones cerebrales traumáticas (Traumatic Brain Injury (TBI) rehabilitation prediction). Los resultados obtenidos demuestran la efectividad del framework a la hora de acelerar y facilitar el proceso de descubrimiento de conocimiento sobre conjuntos de datos reales. ABSTRACT Traditionally, the use of data analysis techniques has been one of the main ways of discovering knowledge hidden in large amounts of data, collected by experts in different domains. Moreover, visualization techniques have also been used to enhance and facilitate this process. However, there are serious limitations in the process of knowledge acquisition, as it is often a slow, tedious and many times fruitless process, due to the difficulty for human beings to understand large datasets. Another major drawback, rarely considered by experts that analyze large datasets, is the involuntary degradation to which they subject the data during analysis tasks, prior to obtaining the final conclusions. Degradation means that data can lose part of their original properties, and it is usually caused by improper data reduction, thereby altering their original nature and often leading to erroneous interpretations and conclusions that could have serious implications. Furthermore, this fact gains a trascendental importance when the data belong to medical or biological domain, and the lives of people depends on the final decision-making, which is sometimes conducted improperly. This is the motivation of this thesis, which proposes a new visual framework, called MedVir, which combines the power of advanced visualization techniques and data mining to try to solve these major problems existing in the process of discovery of valid information. Thus, the main objective is to facilitate and to make more understandable, intuitive and fast the process of knowledge acquisition that experts face when working with large datasets in different domains. To achieve this, first, a strong reduction in the size of the data is carried out in order to make the management of the data easier to the expert, while preserving intact, as far as possible, the original properties of the data. Then, effective visualization techniques are used to represent the obtained data, allowing the expert to interact easily and intuitively with the data, to carry out different data analysis tasks, and so visually stimulating their comprehension capacity. Therefore, the underlying objective is based on abstracting the expert, as far as possible, from the complexity of the original data to present him a more understandable version, thus facilitating and accelerating the task of knowledge discovery. MedVir has been succesfully applied to, among others, the field of magnetoencephalography (MEG), which consists in predicting the rehabilitation of Traumatic Brain Injury (TBI). The results obtained successfully demonstrate the effectiveness of the framework to accelerate and facilitate the process of knowledge discovery on real world datasets.