893 resultados para Policy-based network management
Resumo:
Purpose – The purpose of the paper is to develop an integrated framework for performance management of healthcare services. Design/methodology/approach – This study develops a performance management framework for healthcare services using a combined analytic hierarchy process (AHP) and logical framework (LOGFRAME). The framework is then applied to the intensive care units of three different hospitals in developing nations. Numerous focus group discussions were undertaken, involving experts from the specific area under investigation. Findings – The study reveals that a combination of outcome, structure and process-based critical success factors and a combined AHP and LOGFRAME-based performance management framework helps manage performance of healthcare services. Practical implications – The proposed framework could be practiced in hospital-based healthcare services. Originality/value – The conventional approaches to healthcare performance management are either outcome-based or process-based, which cannot reveal improvement measures appropriately in order to assure superior performance. Additionally, they lack planning, implementing and evaluating improvement projects that are identified from performance measurement. This study presents an integrated approach to performance measurement and implementing framework of improvement projects.
Resumo:
B-ISDN is a universal network which supports diverse mixes of service, applications and traffic. ATM has been accepted world-wide as the transport technique for future use in B-ISDN. ATM, being a simple packet oriented transfer technique, provides a flexible means for supporting a continuum of transport rates and is efficient due to possible statistical sharing of network resources by multiple users. In order to fully exploit the potential statistical gain, while at the same time provide diverse service and traffic mixes, an efficient traffic control must be designed. Traffic controls which include congestion and flow control are a fundamental necessity to the success and viability of future B-ISDN. Congestion and flow control is difficult in the broadband environment due to the high speed link, the wide area distance, diverse service requirements and diverse traffic characteristics. Most congestion and flow control approaches in conventional packet switched networks are reactive in nature and are not applicable in the B-ISDN environment. In this research, traffic control procedures mainly based on preventive measures for a private ATM-based network are proposed and their performance evaluated. The various traffic controls include CAC, traffic flow enforcement, priority control and an explicit feedback mechanism. These functions operate at call level and cell level. They are carried out distributively by the end terminals, the network access points and the internal elements of the network. During the connection set-up phase, the CAC decides the acceptance or denial of a connection request and allocates bandwidth to the new connection according to three schemes; peak bit rate, statistical rate and average bit rate. The statistical multiplexing rate is based on a `bufferless fluid flow model' which is simple and robust. The allocation of an average bit rate to data traffic at the expense of delay obviously improves the network bandwidth utilisation.
Resumo:
The success of mainstream computing is largely due to the widespread availability of general-purpose architectures and of generic approaches that can be used to solve real-world problems cost-effectively and across a broad range of application domains. In this chapter, we propose that a similar generic framework is used to make the development of autonomic solutions cost effective, and to establish autonomic computing as a major approach to managing the complexity of today’s large-scale systems and systems of systems. To demonstrate the feasibility of general-purpose autonomic computing, we introduce a generic autonomic computing framework comprising a policy-based autonomic architecture and a novel four-step method for the effective development of self-managing systems. A prototype implementation of the reconfigurable policy engine at the core of our architecture is then used to develop autonomic solutions for case studies from several application domains. Looking into the future, we describe a methodology for the engineering of self-managing systems that extends and generalises our autonomic computing framework further.
Resumo:
Public values are moving from a research concern to policy discourse and management practice. There are, though, different readings of what public values actually mean. Reflection suggests two distinct strands of thinking: a generative strand that sees public value emerging from processes of public debate; and an institutional interpretation that views public values as the attributes of government producers. Neither perspective seems to offer a persuasive account of how the public gains from strengthened public values. Key propositions on values are generated from comparison of influential texts. A provisional framework is presented of the values base of public institutions and the loosely coupled public propositions flowing from these values. Value propositions issue from different governing contexts, which are grouped into policy frames that then compete with other problem frames for citizens’ cognitive resources. Vital democratic commitments to pluralism require public values to be distributed in competition with other, respected, frames.
Resumo:
This paper investigates the random channel access mechanism specified in the IEEE 802.16 standard for the uplink traffic in a Point-to-MultiPoint (PMP) network architecture. An analytical model is proposed to study the impacts of the channel access parameters, bandwidth configuration and piggyback policy on the performance. The impacts of physical burst profile and non-saturated network traffic are also taken into account in the model. Simulations validate the proposed analytical model. It is observed that the bandwidth utilization can be improved if the bandwidth for random channel access can be properly configured according to the channel access parameters, piggyback policy and network traffic.