940 resultados para Planktonic and sessile bacteria
Resumo:
Ocean Drilling Program Site 704 in the subantarctic South Atlantic was drilled to investigate the response of the Southern Ocean to climatic and Oceanographic developments during the late Neogene. Stable oxygen and carbon isotopes of fine-fraction (<63 µm) carbonate were analyzed to supplement similar analyses of benthic and planktonic foraminifers. The fine fraction is generally composed primarily of coccoliths, and isotopic analyses of the fine fraction were made to complement the foraminiferal analyses. The isotopic curves thus generated suggest paleoceanographic changes not recognizable by the use of benthic and planktonic foraminifers alone. The global Chron 6 carbon isotope shift, found at 253-244 mbsf (6.39-6.0 Ma) at Site 704 in the planktonic and benthic record, is seen in the fine-fraction d13C record as a gradual decrease from 255 mbsf (6.44 Ma) to 210 mbsf (4.24 Ma). At 170 mbsf, mean d18O values of Neogloboquadrina pachyderma increase by 0.6 per mil-0.7 per mil (Hodell and Ciesielski, 1991, doi:10.2973/odp.proc.sr.114.150.1991), reflecting decreased temperature and increased continental ice volume. Accumulation rates increase by 3.3 times above this depth (which corresponds to an age of 2.5 Ma), suggesting increased upwelling and biologic productivity. Carbon isotopic values of fine-fraction carbonate decrease by about 1.5 per mil at 2.6 Ma; however, no change is recorded in the d13C of N. pachyderma. The fine-fraction d13C shift slightly precedes an average l per mil decrease in d13C in benthic foraminifers. The cause of the benthic d13C shift (most likely due to a change in deep water circulation; Hodell and Ciesielski, 1991) is probably not directly related to the fine-fraction shift. The fine-fraction shift is most likely caused by (1) a change in the upwelling to productivity ratio at this site, with increased upwelling bringing lighter carbon to surface waters, more productivity, and higher sedimentation rates and (2) a change in the particle composition of the fine fraction. The increased upwelling is probably due to a northward migration of the Antarctic Polar Front to a position nearer Site 704.
Resumo:
A pronounced deficit of nitrogen (N) in the oxygen minimum zone (OMZ) of the Arabian Sea suggests the occurrence of heavy N-loss that is commonly attributed to pelagic processes. However, the OMZ water is in direct contact with sediments on three sides of the basin. Contribution from benthic N-loss to the total N-loss in the Arabian Sea remains largely unassessed. In October 2007, we sampled the water column and surface sediments along a transect cross-cutting the Arabian Sea OMZ at the Pakistan continental margin, covering a range of station depths from 360 to 1430 m. Benthic denitrification and anammox rates were determined by using 15N-stable isotope pairing experiments. Intact core incubations showed declining rates of total benthic N-loss with water depth from 0.55 to 0.18 mmol N m**-2 day**-1. While denitrification rates measured in slurry incubations decreased from 2.73 to 1.46 mmol N m**-2 day**-1 with water depth, anammox rates increased from 0.21 to 0.89 mmol N m**-2 day**-1. Hence, the contribution from anammox to total benthic N-loss increased from 7% at 360 m to 40% at 1430 m. This trend is further supported by the quantification of cd1-containing nitrite reductase (nirS), the biomarker functional gene encoding for cytochrome cd1-Nir of microorganisms involved in both N-loss processes. Anammox-like nirS genes within the sediments increased in proportion to total nirS gene copies with water depth. Moreover, phylogenetic analyses of NirS revealed different communities of both denitrifying and anammox bacteria between shallow and deep stations. Together, rate measurement and nirS analyses showed that anammox, determined for the first time in the Arabian Sea sediments, is an important benthic N-loss process at the continental margin off Pakistan, especially in the sediments at deeper water depths. Extrapolation from the measured benthic N-loss to all shelf sediments within the basin suggests that benthic N-loss may be responsible for about half of the overall N-loss in the Arabian Sea.
Resumo:
Plankton pump samples and plankton tows (size fractions between 0.04 mm and 1.01 mm) from the eastern North Atlantic Ocean contain the following shell- and skeleton-producing planktonic and nektonic organisms, which can be fossilized in the sediments: diatoms, radiolarians, foraminifers, pteropods, heteropods, larvae of benthic gastropods and bivalves, ostracods, and fish. The abundance of these components has been mapped quantitatively in the eastern North Atlantic surface waters in October - December 1971. More ash (after ignition of the organic matter, consisting mostly of these components) per cubic meter of water is found close to land masses (continents and islands) and above shallow submarine elevations than in the open ocean. Preferred biotops of planktonic diatoms in the region described are temperate shallow water and tropical coastal upwelling areas. Radiolarians rarely occur close to the continent, but are abundant in pelagic warm water masses, even near islands. Foraminifers are similar to the radiolarians, rarer in the coastal water mass of the continent than in the open ocean or off oceanic islands. Their abundance is highest outside the upwelling area off NW Africa. Molluscs generally outnumber planktonic foraminifers, implying that the carbonate cycle of the ocean might be influenced considerably by these animals. The molluscs include heteropods, pteropods, and larvae of benthic bivalves and gastropods. Larvae of benthic molluscs occur more frequently close to continental and island margins and above submarine shoals (in this case mostly guyots) than in the open ocean. Their size increases, but they decrease in number with increasing distance from their area of origin. Ostracods and fish have only been found in small numbers concentrated off NW Africa. All of the above-mentioned components occur in higher abundances in the surface water than in subsurface waters. They are closely related to the hydrography of the sampled water masses (here defined through temperature measurements). Relatively warm water masses of the southeastern branches of the Gulf Stream system transport subtropical and southern temperate species to the Bay of Biscay, relatively cool water masses of the Portugal and Canary Currents carry transitional faunal elements along the NW African coast southwards to tropical regions. These mix in the northwest African upwelling area with tropical faunal elements which are generally assumed to live in the subsurface water masses and which probably have been transported northwards to this area by a subsurface counter current. The faunas typical for tropical surface water masses are not only reduced due to the tongue of cool water extending southwards along the coast, but they are also removed from the coastal zone by the upwelling subsurface water masses carrying their own shell and skeleton assemblages. Tropical water masses contain much more shelland skeleton-producing plankters than subtropical and temperate ones. The climatic conditions found at different latitudes control the development and intensity of a separate continental coastal water mass with its own plankton assemblages. Extent of this water mass and steepness of gradients between the pelagic and coastal environment limit the occurrence of pelagic plankton close to the continental coast. A similar water mass in only weakly developed off oceanic islands.
Resumo:
The book is devoted to stratigraphy of Cretaceous deposits from high latitudes of the southern hemisphere (subantarctic part of the ocean), as well as to geological and climatic Cretaceous history of the area. Correlation with Cretaceous sediments from warm water regions is carried out. Description and photos of characteristic species of planktonic and benthic foraminifera and calcispherulides are given.
Resumo:
This article reviews the history, chemical stratification, biology and biogeochemistry of Ace Lake, which is one of the many marine-derived meromictic (permanently stratified) lakes in the Vestfold Hills, Eastern Antarctica. The lake has an area of 18 ha, a maximum depth of 25 m, and a salinity range from 7 to 43 g l**-1. The lake mixes to a depth of 7 m in late winter as a result of brine freeze out during ice formation. Deeper mixing is precluded by a sharp halocline. The water beneath 12 m is permanently anoxic, The lake was formed approximately 10,800 yr BP as the polar ice cap melted. Sea level rise 7,800 yr BP resulted in invasion of seawater into the initially freshwater lake. Subsequently, sea level dropped, and the now saline lake became isolated from the ocean. The biota of the lake was derived from species trapped when the connection between the lake and the ocean was cut off. The oxic zone above 12 m supports a relatively simple community which includes microbial mats, four major species of phytoplankton (including a picocyanobacterium), two copepod species, and a variety of heterotrophic flagellates and ciliates. The anoxic zone contains populations of photosynthetic sulfur, sulfate reducing, fermentative and methanogenic bacteria, which combine to remineralise organic carbon which sediments from the upper waters. Research on the physics, biology and chemistry of Ace Lake has contributed significantly to knowledge of Antarctic meromictic lakes.
Resumo:
On "Meteor" cruise 30 (1973) 22 piston-cores were collected off Sierra Leone from water-depths between about 5000 m (Sierra Leone Basin) and 500 m (upper continental slope) with the objective to study the sediment composition and age as well as processes of sedimentation on the continental slope in a tropical humid region. Granulometric analysis and determinations of the carbonate contents of the sediment samples were carried out, as well as qualitative and quantitative analysis of the components of the grain size fractions > 63 µm and of the planktonic and benthonic foraminifera > 160 µm. Presently, the cold Canary Current influences the composition of the planktonic foraminifera within the northwestern area of investigation (profile A), whereas the planktonic fauna of the eastern area (profile C) seems to be truly tropical. In all Quaternary sediments from the continental slope off Sierra Leone, species of Globorotalia are less abundant than in truly pelagic sediments. For that reason, the zonation of the Pleistocene sediments based on the presence or absence of Globorotalia cultrata does not always agree with the climatic changes reflected in the sediments. Concerning past climates better results can be obtained by using the changes in percentage abundances of Globigerina sp. sp. and Globigerinoides sp. sp. as indicators for cool and warm temperatures. The Tertiary sediments contain a pelagic foraminiferal assemblage. In the Holocene sediments the benthonic foraminifera do not only serve as good paleodepth indicators, but their communities are also restricted to defined water masses, which change their positions in accordance with climatic changes. Thus, Cassidulina carinata in the area of investigation is an excellent indicator for sediments deposited during times, which were cooler than today; this is true for all cores from the continental slope off Sierra Leone independent of water-depth although this species presently abounds at water-depths around 600 m. The cores from the continental rise and from the Sierra Leone Basin (M30-261, M30-146, M30-147) were deposited below the calcium carbonate compensation depth. Only small sections of the cores consist of the original carbonate-free sediments, whereas the main part of the sediment column is redeposited material, rich in foraminifera, which normally live on the upper continental slope, or even on the shelf. From these cores only M30-261 can be subdivided into biostratigraphic zones ranging from zone V to zone Y. In all cores from the middle and upper continental slope of the eastern area of investigation (profile C; KL 230, 209-204) and in cores KL 183 and KL 184 from the northwestern area (profile A) we observed an undisturbed succession of sediments from the biostratigraphic zones X (partly), Y and Z. All cores from the central area (M30-181, M30-182, M30-262 to 264) and M30-187 from the upper slope of profile A show variable hiatuses in the sedimentary record. Locally, high velocity bottom currents were probably responsible for erosion, nondeposition or minimal sedimentation rates. These currents might have been initiated partly by the somewhat exposed position of this part of the continental slope, where the shelf edge bends from a northwest towards an eastern direction, and partly by very young tectonic movements. Fracture zones with vertically displaced fault blocs are frequent at Sierra Leone continental margin. According to seismic measurements by McMaster et al. (1975) the sites of the central area are located on an uplifted fault bloc explaining the reduced sediment rates or erosion. Unlike the central area, the eastern area (profile C) is situated on a downfaulted bloc with high sediment rates. The sediments from the cores of profile B as well as the turbiditic deep-sea sediments were deposited under a higher flow regime; therefore they are coarser than the extremely fine-grained sediments of the cores from profile C. Since the sand fraction (> 63 µm) is mainly composed of foraminifera, besides pteropods and light-colored fecal pellets, the carbonate content increases with the increasing percentage of the coarse grain fraction. Higher concentrations of quartz were only observed in core sections with considerable carbonate dissolution (mainly in the X-Zone), and, in general, in all sediments from the eastern area with higher terrigenous input including larger concentration of mica. Especially during times transitional between glacials and interglacials (or interstadials) the bottom currents were intensified. The percentages of coarse fraction and carbonate increase with increasing current velocities. Calcium carbonate dissolution becomes important in water depths > 3500 m. During cooler times the lysokline is depressed. Light-colored fecal pellets were redeposited from Late Neogene sediments (M30-187, M30-181). In the area of investigation they occur in the Holocene and mainly the Pleistocene sediments of the cores from the northwestern and central area because only here Tertiary sediments have been eroded at the uppermost continental slope. In the central area there are at least two periods of non-sedimentation and/or erosion which can be confined as being (1) not older than middle Pliocene and not younger than zone V and (2) younger than zone W. The local character of the erosion is documented by the fact that a complete Late Quaternary section is present in the cores of the northwestern and eastern area, each within less than 100 km from incomplete cores from the central area.
Resumo:
Within the generally oligotroph Arctic marine environment river outlets are favoured by many planktonic and benthic organisms due to their high input of organic carbon. The retention of pelagic larvae within nursery grounds and/or the ability to return to their parental grounds prior to settlement is one important factor for the persistence of benthic communities in such river influenced areas. The southern Kara Sea is strongly controlled by high freshwater inputs from the Ob and Yenisei Rivers, which create a pronounced bi-layered pycnocline with a warm fresh/brackish water layer on top and a cold high saline marine layer below. The dispersal of five meroplanktonic species and settled juveniles (the brittle star Ophiocten sericeum, and the polychaetes Micronephtys minuta, Nereimyra aphroditoides, Phyllodoce groenlandica and Prionospio cirrifera) in relation to the adult distribution patterns was investigated. For all apart from P. cirrifera the highest densities of larvae were found in the upper brackish water layer. To assess size-at-settlement, the body sizes of larvae and newly settled juveniles were estimated and compared. Dispersal patterns ranged from virtually no adaption to river run-off as in the common, stenohaline O. sericeum and M. minuta (7 ind./m**3, 459 µm) to local retention as in N. aphroditoides (7 ind./m**3, 541 µm) and P. groenlandica (0.5 ind./m**3, 1121 µm) retained by horizontal eddies created by the outflow. Adults of P. cirrifera, which were exclusively restricted to the estuary of the Yenisei River, showed a well adapted reproductive behaviour to ensure a high retention potential of their progenies. The larvae (1.5 ind./m**3, 1513 µm) were only present in the lower water layers, most probably taking advantage of the prevailing near bottom counter current retaining them within their hatching areas.
Resumo:
The equator to high southern latitude sea surface and vertical temperature gradients are reconstructed from oxygen isotope values of planktonic and benthic foraminifers for the following five time intervals: late Paleocene, early Eocene, early middle Eocene, late Eocene, and early Oligocene. Paleotemperatures are calculated using standard oxygen isotope/temperature equations with adjustments to account for (1) variations in sea water delta18O related to changes in global ice volume over time and (2) latitudinal gradients in surface water delta18O. These reconstructions indicate that sea-surface temperatures (SST) of the Southern Oceans in the early Eocene were as high as 15°C, whereas temperatures during the late Paleocene and early middle Eocene reached maximum levels of 10°-12°C. By the late Eocene and early Oligocene high latitude SST had declined to 6 and 4°C, respectively. For most of the early Paleogene, low latitude sub-tropical temperatures remained constant and well within the range of Holocene temperatures (24°-25°C) but by the late Eocene and early Oligocene declined to values in the range of 18° to 22°C. The late Paleogene apparent decline in tropical temperatures, however, might be artificial because of dissolution of near-surface foraminifera tests which biased sediment assemblages toward deeper-dwelling foraminifera. Moreover, according to recent plate reconstructions, it appears that the majority of sites upon which the late Eocene and early Oligocene tropical temperatures were previously established were located either in or near regions likely to have been influenced by upwelling. Global deepwater temperature on average paralleled southern ocean SST for most of the Paleogene. We speculate based on the overall timing and character of marine sea surface temperature variation during the Paleogene that some combination of both higher levels of greenhouse gases and increased heat transport was responsible for the exceptional high-latitude warmth of the early Eocene.
Resumo:
Oxygen isotope values from calcareous nannofossils in four cores spanning the Quaternary from DSDP Site 593 in Tasman Sea are compared with the delta18O signal of planktonic and benthic foraminifers from the same samples. The classic mid-late Quaternary isotope stages are exhibited with stage 12 particularly well developed. When delta18O values of nannofossils are adjusted for coccolithophore vital effects they indicate larger (by 1-6°C) surface to bottom paleotemperature gradients and greater (by 1-3°C) changes in mean sea-surface temperature between full glacial and interglacial conditions than do delta18O values from planktonic foraminifers. Along with the foraminifers, the nannofossils record a bimodal distribution of delta18O between the early and mid-late Quaternary, indicating a significant change in global ice budget. The delta13C of nannofossils also shows a bimodal distribution, but is opposite to that for the foraminifers. Nannofossil delta18O values record a shift of c. -0.8? at isotope stage 8 corresponding to a major reduction in abundance of the previously dominant gephyrocapsids. A shift in delta13C of c. -1.5? also occurs at stage 8, and a shift in delta13C of c. +1.2? at around stage 14. The delta18O shift in nannofossils is at least a Pacific-wide phenomenon; the delta13C shifts are possibly global. The delta13C signal of nannofossils exhibits an antipathetic relationship to that of benthic foraminifers back to isotope stage 18 but no significant correlation beyond this level to the base of the Quaternary. This is interpreted as reflecting local productivity dominating global influences on delta13C since stage 18 at DSDP Site 593. The difference between nannofossil and benthic foraminifer delta13C signals (Delta13C) tends to be maximum during glacial stages and minimum during interglacials throughout the section, showing a strong correlation with the nannofossil delta180 signal. The increased partitioning of 13C between surface and bottom waters during the glacial periods may indicate heightened productivity in surface waters in the southern Tasman Sea at these times.
Resumo:
Organisms in all domains, Archaea, Bacteria, and Eukarya will respond to climate change with differential vulnerabilities resulting in shifts in species distribution, coexistence, and interactions. The identification of unifying principles of organism functioning across all domains would facilitate a cause and effect understanding of such changes and their implications for ecosystem shifts. For example, the functional specialization of all organisms in limited temperature ranges leads us to ask for unifying functional reasons. Organisms also specialize in either anoxic or various oxygen ranges, with animals and plants depending on high oxygen levels. Here, we identify thermal ranges, heat limits of growth, and critically low (hypoxic) oxygen concentrations as proxies of tolerance in a meta-analysis of data available for marine organisms, with special reference to domain-specific limits. For an explanation of the patterns and differences observed, we define and quantify a proxy for organismic complexity across species from all domains. Rising complexity causes heat (and hypoxia) tolerances to decrease from Archaea to Bacteria to uni- and then multicellular Eukarya. Within and across domains, taxon-specific tolerance limits likely reflect ultimate evolutionary limits of its species to acclimatization and adaptation. We hypothesize that rising taxon-specific complexities in structure and function constrain organisms to narrower environmental ranges. Low complexity as in Archaea and some Bacteria provide life options in extreme environments. In the warmest oceans, temperature maxima reach and will surpass the permanent limits to the existence of multicellular animals, plants and unicellular phytoplankter. Smaller, less complex unicellular Eukarya, Bacteria, and Archaea will thus benefit and predominate even more in a future, warmer, and hypoxic ocean.