868 resultados para Piezo actuators


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was the development of miniaturized structures useful for retention and/or selection of particles and viscous substances from a liquid flow. The proposed low costs structures are similar to macroscopic wastewater treatment systems, named baffles, and allow disassemble. They were simulated using FEMLAB 3.2b package and manufactured in acrylic with conventional tools. Tests for retention or selection of particles in water or air and viscous fluids in water were carried out. Either in air or water particles with 50 mu m diameter will be retained but not with 13 mu m diameter. In aqueous flow, it is also possible the retention of viscous samples, such as silicone 350 cSt. The simulated results showed good agreement with experimental measurements. These miniaturized structures can be useful in sample pretreatment for chemical analysis and microorganism manipulation. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The scientific question addressed in this work is: what hides beneath first order kinetic constant k (s(-1)) measured for hybridization of a DNA target on a biosensor surface. Kinetics hybridization curves were established with a 27 MHz quartz microbalance (9 MHz, third harmonic) biosensor, constituted of a 20-base probe monolayer deposited on a gold covered quartz surface. Kinetics analysis, by a known two-step adsorption-hybridization mechanism, is well appropriate to fit properly hybridization kinetics curves, for complementary 20-base to 40-base targets over two concentration decades. It was found that the K-1 (M-1) adsorption constant, relevant to the first step, concerns an equilibrium between non hybridized targets and hybridized pre-complex and increases with DNA target length. It was established that k(2) (s(-1)), relevant to irreversible formation of a stable duplex, varies in an opposite way to K-1 with DNA target length. (C) 2012 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flexible and free-standing films of piezoelectric composites made up of lead zirconate titanate (PZT) ceramic powder dispersed in a castor oil-based polyurethane (PU) matrix were obtained by spin coating and characterized as materials for sensor applications. The piezoelectric coefficients d 31 and d 33 were measured with the usual technique. The piezoelectric charge constant d 33 yields values up to ≤24 pC/N, even at lower PZT content (33 vol%). Some desirable properties like piezoelectricity, flexibility and good mechanical resistance show this new material to be a good alternative for use as sensors and actuators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Smart material technology has become an area of increasing interest for the development of lighter and stronger structures which are able to incorporate actuator and sensor capabilities for collocated control. In the design of actively controlled structures, the determination of the actuator locations and the controller gains, is a very important issue. For that purpose, smart material modelling, modal analysis methods, control and optimization techniques are the most important ingredients to be taken into account. The optimization problem to be solved in this context presents two interdependent aspects. The first one is related to the discrete optimal actuator location selection problem, which is solved in this paper using genetic algorithms. The second is represented by a continuous variable optimization problem, through which the control gains are determined using classical techniques. A cantilever Euler-Bernoulli beam is used to illustrate the presented methodology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates both theoretically and experimentally the effect of the location and number of sensors and magnetic bearing actuators on both global and local vibration reduction along a rotor using a feedforward control scheme. Theoretical approaches developed for the active control of beams have been shown to be useful as simplified models for the rotor scenario. This paper also introduces the time-domain LMS feedforward control strategy, used widely in the active control of sound and vibration, as an alternative control methodology to the frequency-domain feedforward approaches commonly presented in the literature. Results are presented showing that for any case where the same number of actuators and error sensors are used there can be frequencies at which large increases in vibration away from the error sensors can occur. It is also shown that using a larger number of error sensors than actuators results in better global reduction of vibration but decreased local reduction. Overall, the study demonstrated that an analysis of actuator and sensor locations when feedforward control schemes are used is necessary to ensure that harmful increased vibrations do not occur at frequencies away from rotor-bearing natural frequencies or at points along the rotor not monitored by error sensors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of algorithms for active vibrations control in flexible structures became an area of enormous interest, mainly due to the countless demands of an optimal performance of mechanical systems as aircraft and aerospace structures. Smart structures, formed by a structure base, coupled with piezoelectric actuators and sensor are capable to guarantee the conditions demanded through the application of several types of controllers. This article shows some steps that should be followed in the design of a smart structure. It is discussed: the optimal placement of actuators, the model reduction and the controller design through techniques involving linear matrix inequalities (LMI). It is considered as constraints in LMI: the decay rate, voltage input limitation in the actuators and bounded output peak (output energy). Two controllers robust to parametric variation are designed: the first one considers the actuator in non-optimal location and the second one the actuator is put in an optimal placement. The performance are compared and discussed. The simulations to illustrate the methodology are made with a cantilever beam with bonded piezoelectric actuators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the great challenges of structural dynamics is to ally structures lighther and stronger. The great difficulty is that light systems, in general, have a low inherent damping. Besides, they contain resonance frequencies in the low frequency range. So, any external disturbance can excite the system in some resonance and the resulting effect can be drastic. The methodologies of active damping, with control algorithms and piezoelectric sensors and actuators coupled in a base structure, are attractive in current days, in order to overcome the contradictory features of these requeriments. In this sense, this article contributes with a bibliographical review of the literature on the importance of active noise and vibration control in engineering applications, models of smart structures, techniques of optimal placement of piezoelectric sensors and actuators and methodologies of structural active control. Finally, it is discussed the future perspectives in this area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel instrument for measurement of X-ray intensity from mammography consists of a sensitive pyro-electric detector, a high-sensitivity, low-noise current-to-voltage converter, a microcontroller and a digital display. The heart of this device, and what makes it unique is the pyro-electric detector, which measures radiation by converting heat from absorbed incident X-rays into an electric current. This current is then converted to a voltage and digitised. The detector consists of a ferro-electric crystal; two types were tested; lithium tantalate and lithium niobate. X-ray measurement in mammography is challenging because of its relatively low photon energy range, from 11 keV to 15 keV equivalent mean energy, corresponding to a peak tube potential from 22 to 36 kV. Consequently, energy fluence rate or intensity is low compared with that of common diagnostic X-ray. The instrument is capable of measuring intensities as low as 0.25 mWm -2 with precision greater than 99%. Not only was the instrument capable of performing in the clinical environment, with high background electromagnetic interference and vibration, but its performance was not degraded after being subjected to 140 roentgen (3.6 × 10 -2 C kg -2 air) as measured by piezo-electric (d 33) or pyro-electric coefficients. © IFMBE 2005.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composites made of calcium modified lead titanate ceramic powder and poly (ether-ether-ketone) high performance polymer matrix were prepared in the film form using a hot press. The acoustic and electromechanical properties of the composites have been determined using the ultrasonic immersion technique and piezoelectric spectroscopy, respectively. The composite film with 60 - 40 vol.% PTCa/PEEK was tested as acoustic emission detector. Preliminary results shown that the piezo composite can be used as sensor to evaluate the behavior of materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A finite element modeling of an intelligent truss structure with piezoelectric stack actuators for the purpose of active damping and structural vibration attenuation is presented. This paper concerns with the following issues aspects: the design of intelligent truss structure considering electro-mechanical coupling between the host structure and piezoelectric stack actuators; the H 2 norm approach to search for optimal placement of actuators and sensors; and finally some aspects in robust control techniques. The electro-mechanical behavior of piezoelectric elements is directly related to the successful application of the actuators in truss structures. In order to achieve the desired damping in the interested bandwidth frequency it is used the H ∞ output feedback solved by convex optimization. The constraints to be reached are written by linear matrix inequalities (LMI). The paper concludes with a numerical example, using Matlab and Simulink, in a cantilevered, 2-bay space truss structure. The results demonstrated the approach applicability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Piezoelectric actuators are widely used in positioning systems which demand high resolution such as scanning microscopy, fast mirror scanners, vibration cancellation, cell manipulation, etc. In this work a piezoelectric flextensional actuator (PFA), designed with the topology optimization method, is experimentally characterized by the measurement of its nanometric displacements using a Michelson interferometer. Because this detection process is non-linear, adequate techniques must be applied to obtain a linear relationship between an output electrical signal and the induced optical phase shift. Ideally, the bias phase shift in the interferometer should remain constant, but in practice it suffers from fading. The J1-J4 spectral analysis method provides a linear and direct measurement of dynamic phase shift in a no-feedback and no-phase bias optical homodyne interferometer. PFA application such as micromanipulation in biotechnology demands fast and precise movements. So, in order to operate with arbitrary control signals the PFA must have frequency bandwidth of several kHz. However as the natural frequencies of the PFA are low, unwanted dynamics of the structure are often a problem, especially for scanning motion, but also if trajectories have to be followed with high velocities, because of the tracking error phenomenon. So the PFA must be designed in such a manner that the first mechanical resonance occurs far beyond this band. Thus it is important to know all the PFA resonance frequencies. In this work the linearity and frequency response of the PFA are evaluated up to 50 kHz using optical interferometry and the J1-J4 method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a proposal of systemic architecture, to make automatic actions in the positioning of launch rail of unguided sounding rockets, which are based on a supervision system, a programmable logical controller, a sensory and actuators, available in Brazilian national market. Copyright © 2006 Society of Automotive Engineers, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of algorithms for active vibration control in flexible structures became an area of enormous interest for some researchers due to the innumerable requirements for better performance in mechanical systems, as for instance, aircrafts and aerospace structures. Intelligent systems, constituted for a base structure with sensors and actuators connected, are capable to guarantee the demanded conditions, through the application of diverse types of controllers. For the project of active controllers it is necessary, in general, to know a mathematical model that enable the representation in the space of states, preferential in modal coordinates to permit the truncation of the system and reduction in the order of the controllers. For practical applications of engineering, some mathematical models based in discrete-time systems cannot represent the physical problem, therefore, techniques of identification of system parameters must be used. The techniques of identification of parameters determine the unknown values through the manipulation of the input (disturbance) and output (response) signals of the system. Recently, some methods have been proposed to solve identification problems although, none of them can be considered as being universally appropriate to all the situations. This paper is addressed to an application of linear quadratic regulator controller in a structure where the damping, stiffness and mass matrices were identified through Chebyshev's polynomial functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An 8051-based microcontroller tester has been designed to reduce troubleshooting time of the Electro-Hydraulic Actuators (EHA) installed in fly-by-wire aircrafts. The tester algorithm first evaluates EHA pressure and position sensor signals to emit either a pass or fail message. The evaluation is based on predefined ranges of EHA pressure and position signals. Next, the instrument tests the EHA response capability - a way of dynamic response evaluation, again issuing a suitable response. The instrument proved to be reliable after being successfully evaluated in laboratory and in a real model test airplane. © 2007 IEEE.