966 resultados para Peripheral blood mononuclear cells
Resumo:
We recently described the development in vitro of cells with granules characteristic of eosinophils and basophils (hybrid granulocytes) from normal human cord blood mononuclear cells cultured for 14 days with recombinant human (rh) interleukin (IL)-3, rhIL-5, and a soluble basement membrane, Matrigel. Hybrid granulocytes constitutively produced granulocyte/macrophage colony-stimulating factor (GM-CSF) and rapidly developed into eosinophils after the exogenous cytokines and Matrigel were removed. To characterize the developmental progression of hybrid granulocytes, cells were maintained for an additional 14 days in medium containing rhIL-3, rhIL-5, and Matrigel. After 28 days, 73% +/- 1% (mean +/- SEM; n = 6) of the nonadherent cells were mononuclear eosinophils, 13% +/- 3% were eosinophils with two or more nuclear lobes, 13% +/- 4% were hybrid granulocytes, and 0.2% +/- 0.1% were basophils. More than 90% of the mononuclear eosinophils were hypodense as determined by centrifugation through metrizamide gradients. After an additional 5 days of culture in medium without exogenous cytokines, 65% +/- 3% (n = 5) of the 28-day cells excluded trypan blue. In contrast, 2% +/- 1% of freshly isolated peripheral blood eosinophils survived 5 days of culture without exogenous cytokines (n = 5). Fifty percent conditioned medium from in vitro derived 28-day mononuclear eosinophils and 14-day hybrid granulocytes maintained the survival of 60% +/- 7% and 77% +/- 7%, respectively, of freshly isolated peripheral blood eosinophils for 72 h, compared with 20% +/- 8% survival in medium alone (n = 3). The eosinophil viability-sustaining activity of 50% mononuclear eosinophil-conditioned medium was neutralized with a GM-CSF antibody. A total of 88% of the 28-day cells exhibited immunochemical staining for GM-CSF. Thus, during eosinophilopoiesis, both hybrid eosinophil/basophil intermediates and immature mononuclear eosinophils exhibit autocrine regulation of viability due to constitutive production of GM-CSF.
Resumo:
Quinolinate (Quin), a metabolite in the kynurenine pathway of tryptophan degradation and a neurotoxin that appears to act through the N-methyl-D-aspartate receptor system, was localized in cultured human peripheral blood monocytes/macrophages (PBMOs) by using a recently developed immunocytochemical method. Quin immunoreactivity (Quin-IR) was increased in gamma interferon (IFN-gamma)-stimulated monocytes/macrophages (MOs). In addition, the precursors, tryptophan and kynurenine, significantly increased Quin-IR. Infection of MOs by human T-cell lymphotropic virus type I (HTLV-I) in vitro substantially increased both the number of Quin-IR cells and the intensity of Quin-IR. At the peak of the Quin-IR response, about 40% of the cells were Quin-IR positive. In contrast, only about 2-5% of the cells were positive for HTLV-I, as detected by both immunofluorescence for the HTLV-I antigens and PCR techniques for the HTLV-I Tax gene. These results suggest that HTLV-I-induced Quin production in MOs occurs by an indirect mechanism, perhaps via cytokines produced by the infection but not directly by the virus infection per se. The significance of these findings to the neuropathology of HTLV-I infection is discussed.
Resumo:
Peripheral blood lymphocytes (PBLs) are primary targets for gene therapy of inherited and acquired disorders of the immune system. We describe the development of an optimized transduction system that provides for high-efficiency retrovirus-mediated gene transfer into primary PBLs. This optimized transduction protocol combines centrifugation of the lymphocytes (1000 x g) at the inception of transduction with phosphate depletion, low-temperature incubation (32 degrees C), and the use of the packaging cell line PG13. Gene marking studies of human and primate PBLs using these optimized transduction conditions demonstrated that the transduction efficiency exceeded 50% of the total lymphocyte population. The optimized transduction efficiency of PBLs with amphotropic retroviral vectors was in excess of 25%. The transduction procedure does not alter phenotype, viability, or expansion of the transduced cells. Our data indicate that this optimized transduction system leads to high-efficiency gene transfer into primary human lymphocytes, which obviates the requirement for selection of transduced cells prior to gene-therapy procedures. Thus, large quantities of healthy retrovirally transduced lymphocytes containing a broad immunological repertoire can be generated for use in clinical protocols. Our results represent a significant improvement in the methodology for the transduction of lymphocytes for gene therapy.
Resumo:
Changes in blood dendritic cell (BDC) counts (CD123(hi)BDC and CD11c(+)BDC) and expression of CD62L, CCR7, and CD49d were analyzed in healthy donors, multiple myeloma (MM), and non-Hodgkin lymphoma (NHL) patients, who received granulocyte-colony stimulating factor (G-CSF) containing peripheral blood stem cell (PBSC) mobilization protocols. Low-dose G-CSF in healthy donors (8-10 mug/ kg/d subcutaneously) and high-dose G-CSF in patients (30 mug/kg/d) increased CD123(hi)BDC (2- to 22-fold, mean 3.7 x 10(6)/ L-17.7 x 10(6)/L and 1.9 x 10(6)/L-12.0 x 10(6)/ L) in healthy donors and MM but decreased CD11c(+)BDC (2- to 10-fold, mean 5.7 x 10(6)/L-1.6 x 10(6)/L) in NHL patients, on the day of apheresis, compared with steady state. After apheresis, CD123(hi)BDC counts remained high, whereas low CD11c(+)BDC counts tended to recover in the following 2-5 days. Down-regulation of CD62L and up-regulation of CCR7 on CD123(hi)BDC were found in most healthy donors and MM patients. CD49d expression was unchanged. Thus, PBSC mobilization may change BDC counts by altering molecules necessary for BDC homing from blood into tissues.
Resumo:
Despite more than a 10-fold increase in T cell numbers in G-CSF-mobilized peripheral blood stem cell (PBSC) grafts, incidence and severity of acute graft-vs-host disease (GVHD) are comparable to bone marrow transplantation. As CD1d-restricted, Valpha24(+)Vbeta11(+) NKT cells have pivotal immune regulatory functions and may influence GVHD, we aimed to determine whether G-CSF has any effects on human NKT cells. In this study, we examined the frequency and absolute numbers of peripheral blood NKT cells in healthy stem cell donors (n = 8) before and following G-CSF (filgrastim) treatment. Effects of in vivo and in vitro G-CSF on NKT cell cytokine expression profiles and on responsiveness of NKT cell subpopulations to specific stimulation by alpha-galactosylceramide (alpha-GalCer) were assessed. Contrary to the effects on conventional T cells, the absolute number of peripheral blood NKT cells was unaffected by G-CSF administration. Furthermore, responsiveness of NKT cells to alpha-GalCer stimulation was significantly decreased (p < 0.05) following exposure to G-CSF in vivo. This hyporesponsiveness was predominantly due to a direct effect on NKT cells, with a lesser contribution from G-CSF-mediated changes in APC. G-CSF administration resulted in polarization of NKT cells toward a Th2, IL-4-secreting phenotype following alpha-GalCer stimulation and preferential expansion of the CD4(+) NKT cell subset. We conclude that G-CSF has previously unrecognized differential effects in vivo on NKT cells and conventional MHC-restricted T cells, and effects on NKT cells may contribute to the lower than expected incidence of GVHD following allogeneic peripheral blood stem cell transplantation.
Resumo:
Genes for peripheral tissue-restricted self-antigens are expressed in thymic and hematopoietic cells. In thymic medullary epithelial cells, self-antigen expression imposes selection on developing autoreactive T cells and regulates susceptibility to autoimmune disease in mouse models. Less is known about the role of self-antigen expression by hematopoietic cells. Here we demonstrate that one of the endocrine self-antigens expressed by human blood myeloid cells, proinsulin, is encoded by an RNA splice variant. The surface expression of immunoreactive proinsulin was significantly decreased after transfection of monocytes with small interfering RNA to proinsulin. Furthermore, analogous to proinsulin transcripts in the thymus, the abundance of the proinsulin RNA splice variant in blood cells corresponded with the length of the variable number of tandem repeats 5' of the proinsulin gene, known to be associated with type 1 diabetes susceptibility. Self-antigen expression by peripheral myeloid cells extends the umbrella of immunological self and, by analogy with the thymus, may be implicated in peripheral immune tolerance.
Resumo:
Objective: Previous studies have suggested that somatoform disorders (SFD) might be associated with changes in the function of the central and autonomic nervous systems. The aim of this study was to examine the possible immunological differences between SFD and healthy controls. Methods: Twenty-four patients with SFD and 13 healthy individuals completed the psychological questionnaires to assess symptom reporting [Symptom Checklist-90 Revised (SCL-90-R)] and to diagnose for SFD [Screening for Somatoform Symptoms scale (SOMS-scale)]. Participants also provided a blood sample taken in the morning, which was analysed with an automated cell counter to determine the number of leucocytes per μl and with flow cytometry to determine lymphocyte subsets. Results: With the exception of a higher T4/T8 ratio in the patient group, which was mainly because of lower CD8 counts, there were no significant differences in the absolute number of lymphocytes (subsets) between patients with SFD and healthy subjects. A positive correlation between B-lymphocyte subsets (CD19+CD22+, CD19+CD5+, CD19+CD3-) to all scales of the SCL-90-R, except somatisation, were found in SFD. Additionally, a positive correlation was found in SFD between CD14+CD16+ monocytes and somatisation (0.573) on the SCL-90-R scale. Conclusion: These data indicate that patients with SFD have an enhanced humoral immunity as shown by increased B-cell numbers and furthermore an elevated T4/T8 ratio because of lower CD8 suppressor cells. Further studies will be required to determine whether these alterations in lymphocyte subsets are directly involved in the pathophysiology of SFD. © 2007 Blackwell Munksgaard.
Resumo:
Modification of human islets prior to transplantation may improve long-term clinical outcome in terms of diabetes management, by supporting graft function and reducing the potential for allo-rejection. Intragraft incorporation of stem cells secreting beta (β)-cell trophic and immunomodulatory factors represents a credible approach, but requires suitable culture methods to facilitate islet alteration without compromising integrity. This study employed a three-dimensional rotational cell culture system (RCCS) to achieve modification, preserve function, and ultimately influence immune cell responsiveness to human islets. Islets underwent intentional dispersal and rotational culture-assisted aggregation with amniotic epithelial cells (AEC) exhibiting intrinsic immunomodulatory potential. Reassembled islet constructs were assessed for functional integrity, and their ability to induce an allo-response in discrete T-cell subsets determined using mixed islet:lymphocyte reaction assays. RCCS supported the formation of islet:AEC aggregates with improved insulin secretory capacity compared to unmodified islets. Further, the allo-response of peripheral blood mononuclear cell (PBMC) and purified CD4+ and CD8+ T-cell subsets to AEC-bearing grafts was significantly (p < 0.05) attenuated. Rotational culture enables pre-transplant islet modification involving their integration with immunomodulatory stem cells capable of subduing the allo-reactivity of T cells relevant to islet rejection. The approach may play a role in achieving acute and long-term graft survival in islet transplantation.
Resumo:
C-reactive protein (CRP), a normally occurring human plasma protein may become elevated as much as 1,000 fold during disease states involving acute inflammation or tissue damage. Through its binding to phosphorylcholine in the presence of calcium, CRP has been shown to potentiate the activation of complement, stimulate phagocytosis and opsonize certain microorganisms. Utilizing a flow cytometric functional ligand binding assay I have demonstrated that a monocyte population in human peripheral blood and specific human-derived myelomonocytic cell lines reproducibly bind an evolutionarily conserved conformational pentraxin epitope on human CRP through a mechanism that does not involve its ligand, phosphorylcholine. ^ A variety of cell lines at different stages of differentiation were examined. The monocytic cell line, THP-1, bound the most CRP followed by U937 and KG-1a cells. The HL-60 cell line was induced towards either the granulocyte or monocyte pathway with DMSO or PMA, respectively. Untreated HL-60 cells or DMSO-treated cells did not bind CRP while cells treated with PMA showed increased binding of CRP, similar to U-937 cells. T cell and B-cell derived lines were negative. ^ Inhibition studies with Limulin and human SAP demonstrated that the binding site is a conserved pentraxin epitope. The calcium requirement necessary for binding to occur indicated that the cells recognize a conformational form of CRP. Phosphorylcholine did not inhibit the reaction therefore the possibility that CRP had bound to damaged membranes with exposed PC sites was discounted. ^ A study of 81 normal donors using flow cytometry demonstrated that a majority of peripheral blood monocytes (67.9 ± 1.3, mean ± sem) bound CRP. The percentage of binding was normally distributed and not affected by gender, age or ethnicity. Whole blood obtained from donors representing a variety of disease states showed a significant reduction in the level of CRP bound by monocytes in those donors classified with infection, inflammation or cancer. This reduction in monocyte populations binding CRP did not correlate with the concentration of plasma CRP. ^ The ability of monocytes to specifically bind CRP combined with the binding reactivity of the protein itself to a variety of phosphorylcholine containing substances may represent an important bridge between innate and adaptive immunity. ^
Resumo:
This work aimed to evaluate cardiac morphology/function and histological changes induced by bone marrow cells (BMCs) and cultured mesenchymal stem cells (MSCs) injected at the myocardium of spontaneously hypertensive rats (SHR) submitted to surgical coronary occlusion. Female syngeneic adult SHR, submitted (MI) or not (C) to coronary occlusion, were treated 24 h later with in situ injections of normal medium (NM), or with MSCs (MSC) or BMCs (BM) from male rats. The animals were evaluated after 1 and 30 days by echocardiography, histology of heart sections and PCR for the Y chromosome. Improved ejection fraction and reduced left ventricle infarcted area were observed in MSC rats as compared to the other experimental groups. Treated groups had significantly reduced lesion tissue score, increased capillary density and normal (not-atrophied) myocytes, as compared to NM and C groups. The survival rate was higher in C, NM and MSC groups as compared to MI and BM groups. In situ injection of both MSCs and BMCs resulted in improved cardiac morphology, in a more physiological model of myocardial infarction represented by surgical coronary occlusion of spontaneously hypertensive rats. Only treatment with MSCs, however, ameliorated left ventricle dysfunction, suggesting a positive role of these cells in heart remodeling in infarcted hypertensive subjects.
Resumo:
The lack of a clear correlation between the levels of antibody to pertussis antigens and protection against disease lends credence to the possibility that cell-mediated immunity provides primary protection against disease. This phase I comparative trial had the aim of comparing the in vitro cellular immune response and anti-pertussis toxin (anti-PT) immunoglobulin G (IgG) titers induced by a cellular pertussis vaccine with low lipopolysaccharide (LPS) content (wP(low) vaccine) with those induced by the conventional whole-cell pertussis (wP) vaccine. A total of 234 infants were vaccinated at 2, 4, and 6 months with the conventional wP vaccine or the wP(low) vaccine. Proliferation of CD3(+) T cells was evaluated by flow cytometry after 6 days of peripheral blood mononuclear cell culture with stimulation with heat-killed Bordetella pertussis or phytohemagglutinin (PHA). CD3(+), CD4(+), CD8(+), and T-cell receptor gamma delta-positive (gamma delta(+)) cells were identified in the gate of blast lymphocytes. Gamma interferon, tumor necrosis factor alpha, interleukin-4 (IL-4), and IL-10 levels in super-natants and serum anti-PT IgG levels were determined using enzyme-linked immunosorbent assay (ELISA). The net percentage of CD3(+) blasts in cultures with B. pertussis in the group vaccinated with wP was higher than that in the group vaccinated with the wP(low) vaccine (medians of 6.2% for the wP vaccine and 3.9% for the wP(low) vaccine; P = 0.029). The frequencies of proliferating CD4(+), CD8(+), and gamma delta(+) cells, cytokine concentrations in supernatants, and the geometric mean titers of anti-PT IgG were similar for the two vaccination groups. There was a significant difference between the T-cell subpopulations for B. pertussis and PHA cultures, with a higher percentage of gamma delta(+) cells in the B. pertussis cultures (P < 0.001). The overall data did suggest that wP vaccination resulted in modestly better specific CD3(+) cell proliferation, and gamma delta(+) cell expansions were similar with the two vaccines.
Resumo:
Dendritic cells (DC) can be generated by culture of adherent peripheral blood (PB) cells in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). There is controversy as to whether these DC arise from proliferating precursors or simply from differentiation of monocytes. DC were generated from myeloid-enriched PB non-T cells or sorted monocytes. DC generated from either population functioned as potent antigen-presenting cells. Uptake of [H-3]-thymidine was observed in DC cultured from myeloid-enriched non-T cells. Addition of lipopolysaccharide or tumor necrosis factor-alpha led to maturation of the DC, but did not inhibit proliferation. Ki67(+) cells were observed in cytospins of these DC, and by double staining were CD3(-)CD19(-)CD11c(-)CD40(-) and myeloperoxidase(+), suggesting that they were myeloid progenitor cells. Analysis of the starting population by flow cytometry demonstrated small numbers of CD34(+)CD33(-)CD14(-) progenitor cells, and numerous granulocyte-macrophage colony-forming units were generated in standard assays. Thus, production of DC in vitro from adherent PB cells also enriches for progenitor cells that are capable of proliferation after exposure to GM-CSF. Of clinical importance, the yield of DC derived in the presence of GM-CSF and IL-4 cannot be expanded beyond the number of starting monocytes. (C) 1998 by The American Society of Hematology.
Resumo:
Dendritic cells (DC) can be generated by culture of adherent peripheral blood (PB) cells in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). There is controversy as to whether these DC arise from proliferating precursors or simply from differentiation of monocytes. DC were generated from myeloid-enriched PB non-T cells or sorted monocytes. DC generated from either population functioned as potent antigen-presenting cells. Uptake of [H-3]-thymidine was observed in DC cultured from myeloid-enriched non-T cells. Addition of lipopolysaccharide or tumor necrosis factor-alpha led to maturation of the DC, but did not inhibit proliferation. Ki67(+) cells were observed in cytospins of these DC, and by double staining were CD3(-)CD19(-)CD11c(-)CD40(-) and myeloperoxidase(+), suggesting that they were myeloid progenitor cells. Analysis of the starting population by flow cytometry demonstrated small numbers of CD34(+)CD33(-)CD14(-) progenitor cells, and numerous granulocyte-macrophage colony-forming units were generated in standard assays. Thus, production of DC in vitro from adherent PB cells also enriches for progenitor cells that are capable of proliferation after exposure to GM-CSF. Of clinical importance, the yield of DC derived in the presence of GM-CSF and IL-4 cannot be expanded beyond the number of starting monocytes. (C) 1998 by The American Society of Hematology.
Resumo:
Mutations of Kit at position D816 have been implicated in mastocytosis, acute myeloid leukaemia and germ cell tumours. Expression of this mutant Kit in cell lines results in factor-independent growth, differentiation and increased survival in vitro and tumourigenicity in vivo. Mutant D816VKit and wild-type Kit were expressed in murine primary haemopoietic cells and grown in stem cell factor (SCF) or the absence of factors. Expression of D816VKit did not lead to transformation as assessed by a colony assay, but resulted in enhanced differentiation of cells when compared to control cells. D816VKit induced an increase in the number of cells differentiating along the megakaryocyte lineage in the absence of factors. SCF had an added effect with an increase in differentiation of mast cells. Expression of wild-type Kit in the presence of SCF also failed to cause transformation and induced differentiation of mast cells and megakaryocytes. We conclude that constitutive expression of D816VKit in primary haemopoietic cells is not a sufficient transforming stimulus but leads to the survival and maturation of cells whose phenotype is influenced by the presence of SCF. (C) 2003 Elsevier Science Ltd. All rights reserved.