979 resultados para Pathogen


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colour polymorphism in vertebrates is usually under genetic control and may be associated with variation in physiological traits. The melanocortin 1 receptor (Mc1r) has been involved repeatedly in melanin-based pigmentation but it was thought to have few other physiological effects. However, recent pharmacological studies suggest that MC1R could regulate the aspects of immunity. We investigated whether variation at Mc1r underpins plumage colouration in the Eleonora's falcon. We also examined whether nestlings of the different morphs differed in their inflammatory response induced by phytohemagglutinin (PHA). Variation in colouration was due to a deletion of four amino acids at the Mc1r gene. Cellular immune response was morph specific. In males, but not in females, dark nestling mounted a lower PHA response than pale ones. Although correlative, our results raise the neglected possibility that MC1R has pleiotropic effects, suggesting a potential role of immune capacity and pathogen pressure on the maintenance of colour polymorphism in this species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The contribution of secretory immunoglobulin A (SIgA) antibodies in the defense of mucosal epithelia plays an important role in preventing pathogen adhesion to host cells, therefore blocking dissemination and further infection. This mechanism, referred to as immune exclusion, represents the dominant mode of action of the antibody. However, SIgA antibodies combine multiple facets, which together confer properties extending from intracellular and serosal neutralization of antigens, activation of non-inflammatory pathways and homeostatic control of the endogenous microbiota. The sum of these features suggests that future opportunities for translational application from research-based knowledge to clinics include the mucosal delivery of bioactive antibodies capable of preserving immunoreactivity in the lung, gastrointestinal tract, the genito-urinary tract for the treatment of infections. This article covers topics dealing with the structure of SIgA, the dissection of its mode of action in epithelia lining different mucosal surfaces and its potential in immunotherapy against infectious pathogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several ant species vary in the number of queens per colony, yet the causes and consequences of this variation remain poorly understood. In previous experiments, we found that Formica selysi workers originating from multiple-queen (=polygyne) colonies had a lower resistance to a fungal pathogen than workers originating from single-queen (=monogyne) colonies. In contrast, group diversity improved disease resistance in experimental colonies. This discrepancy between field and experimental colonies suggested that variation in social structure in the field had antagonistic effects on worker resistance, possibly through a down-regulation of the immune system balancing the positive effect of genetic diversity. Here, we examined if workers originating from field colonies with alternative social structure differed in three major components of their immune system. We found that workers from polygyne colonies had a lower bacterial growth inhibitory activity than workers from monogyne colonies. In contrast, workers from the two types of colonies did not differ significantly in bacterial cell wall lytic activity and prophenoloxidase activity. Overall, the presence of multiple queens in a colony correlated with a slight reduction in one inducible component of the immune system of individual workers. This reduced level of immune defence might explain the lower resistance of workers originating from polygyne colonies despite the positive effect of genetic diversity. More generally, these results indicate that social changes at the group level can modulate individual immune defences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Saccharomyces cerevisiae, TBF1, an essential gene, influences telomere function but also has other roles in the global regulation of transcription. We have identified a new member of the tbf1 gene family in the mammalian pathogen Pneumocystis carinii. We demonstrate by transspecies complementation that its ectopic expression can provide the essential functions of Schizosaccharomyces pombe tbf1 but that there is no rescue between fission and budding yeast orthologues. Our findings indicate that an essential function of this family of proteins has diverged in the budding and fission yeasts and suggest that effects on telomere length or structure are not the primary cause of inviability in S. pombe tbf1 null strains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The brood of ants and other social insects is highly susceptible to pathogens, particularly those that penetrate the soft larval and pupal cuticle. We here test whether the presence of a pupal cocoon, which occurs in some ant species but not in others, affects the sanitary brood care and fungal infection patterns after exposure to the entomopathogenic fungus Metarhizium brunneum. We use a) a comparative approach analysing four species with either naked or cocooned pupae and b) a within-species analysis of a single ant species, in which both pupal types co-exist in the same colony. RESULTS: We found that the presence of a cocoon did not compromise fungal pathogen detection by the ants and that species with cocooned pupae increased brood grooming after pathogen exposure. All tested ant species further removed brood from their nests, which was predominantly expressed towards larvae and naked pupae treated with the live fungal pathogen. In contrast, cocooned pupae exposed to live fungus were not removed at higher rates than cocooned pupae exposed to dead fungus or a sham control. Consistent with this, exposure to the live fungus caused high numbers of infections and fungal outgrowth in larvae and naked pupae, but not in cocooned pupae. Moreover, the ants consistently removed the brood prior to fungal outgrowth, ensuring a clean brood chamber. CONCLUSION: Our study suggests that the pupal cocoon has a protective effect against fungal infection, causing an adaptive change in sanitary behaviours by the ants. It further demonstrates that brood removal-originally described for honeybees as "hygienic behaviour"-is a widespread sanitary behaviour in ants, which likely has important implications on disease dynamics in social insect colonies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AbstractThe vertebrate immune system is composed of the innate and the adaptive branches. Innate immune cells represent the first line of defense and detect pathogens through pattern recognition receptors (PRRs), detecting evolutionary conserved pathogen- and danger- associated molecular patterns. Engagement of these receptors initiates the inflammatory response, but also instructs antigen-specific adaptive immune cells. NOD-like receptors (NLRs) are an important group of PRRs, leading to the production of inflammatory mediators and favoring antigen presentation to Τ lymphocytes through the regulation of major histocompatibility complex (MHC) molecules.In this work we focused our attention on selected NOD-like receptors (NLRs) and their role at the interface between innate and adaptive immunity. First, we describe a new regulatory mechanism controlling IL-1 production. Our results indicate that type I interferons (IFNs) block NLRP1 and NLRP3 inflammasome activity and interfere with LPS-driven proIL-Ια and -β induction. As type I IFNs are produced upon viral infections, these anti-inflammatory effects of type I IFN could be relevant in the context of superinfections, but could also help explaining the efficacy of IFN-β in multiple sclerosis treatment.The second project addresses the role of a novel NLR family member, called NLRC5. The function of this NLR is still matter of debate, as it has been proposed as both an inhibitor and an activator of different inflammatory pathways. We found that the expression of this protein is restricted to immune cells and is positively regulated by IFNs. We generated Nlrc5-deficient mice and found that this NLR plays an essential role in Τ, NKT and, NK lymphocytes, in which it drives the expression of MHC class I molecules. Accordingly, we could show that CD8+ Τ cell-mediated killing of target lymphocytes lacking NLRC5 is strongly impaired. Moreover, NLRC5 expression was found to be low in many lymphoid- derived tumor cell lines, a mechanism that could be exploited by tumors to escape immunosurveillance.Finally, we found NLRC5 to be involved in the production of IL-10 by CD4+ Τ cells, as Nlrc5- deficient Τ lymphocytes produced less of this cytokine upon TCR triggering. In line with these observations, Mrc5-deficient CD4+ Τ cells expanded more than control cells when transferred into lymphopenic hosts and led to a more rapid appearance of colitis symptoms. Therefore, our work gives novel insights on the function of NLRC5 by using knockout mice, and strongly supports the idea that NLRs direct not only innate, but also adaptive immune responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sleep spindles are synchronized 11-15 Hz electroencephalographic (EEG) oscillations predominant during nonrapid-eye-movement sleep (NREMS). Rhythmic bursting in the reticular thalamic nucleus (nRt), arising from interplay between Ca(v)3.3-type Ca(2+) channels and Ca(2+)-dependent small-conductance-type 2 (SK2) K(+) channels, underlies spindle generation. Correlative evidence indicates that spindles contribute to memory consolidation and protection against environmental noise in human NREMS. Here, we describe a molecular mechanism through which spindle power is selectively extended and we probed the actions of intensified spindling in the naturally sleeping mouse. Using electrophysiological recordings in acute brain slices from SK2 channel-overexpressing (SK2-OE) mice, we found that nRt bursting was potentiated and thalamic circuit oscillations were prolonged. Moreover, nRt cells showed greater resilience to transit from burst to tonic discharge in response to gradual depolarization, mimicking transitions out of NREMS. Compared with wild-type littermates, chronic EEG recordings of SK2-OE mice contained less fragmented NREMS, while the NREMS EEG power spectrum was conserved. Furthermore, EEG spindle activity was prolonged at NREMS exit. Finally, when exposed to white noise, SK2-OE mice needed stronger stimuli to arouse. Increased nRt bursting thus strengthens spindles and improves sleep quality through mechanisms independent of EEG slow waves (<4 Hz), suggesting SK2 signaling as a new potential therapeutic target for sleep disorders and for neuropsychiatric diseases accompanied by weakened sleep spindles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small ubiquitin-like modifier (SUMO) conjugation affects a broad range of processes in plants, including growth, flower initiation, pathogen defense, and responses to abiotic stress. Here, we investigate in vivo and in vitro a SUMO conjugating enzyme with a Cys to Ser change in the active site, and show that it has a dominant negative effect. In planta expression significantly perturbs normal development, leading to growth retardation, early flowering and gene expression changes. We suggest that the mutant protein can serve as a probe to investigate sumoylation, also in plants for which poor genetic infrastructure precludes analysis via loss-of-function mutants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Point-of-care (POC) tests offer potentially substantial benefits for the management of infectious diseases, mainly by shortening the time to result and by making the test available at the bedside or at remote care centres. Commercial POC tests are already widely available for the diagnosis of bacterial and viral infections and for parasitic diseases, including malaria. Infectious diseases specialists and clinical microbiologists should be aware of the indications and limitations of each rapid test, so that they can use them appropriately and correctly interpret their results. The clinical applications and performance of the most relevant and commonly used POC tests are reviewed. Some of these tests exhibit insufficient sensitivity, and should therefore be coupled to confirmatory tests when the results are negative (e.g. Streptococcus pyogenes rapid antigen detection test), whereas the results of others need to be confirmed when positive (e.g. malaria). New molecular-based tests exhibit better sensitivity and specificity than former immunochromatographic assays (e.g. Streptococcus agalactiae detection). In the coming years, further evolution of POC tests may lead to new diagnostic approaches, such as panel testing, targeting not just a single pathogen, but all possible agents suspected in a specific clinical setting. To reach this goal, the development of serology-based and/or molecular-based microarrays/multiplexed tests will be needed. The availability of modern technology and new microfluidic devices will provide clinical microbiologists with the opportunity to be back at the bedside, proposing a large variety of POC tests that will allow quicker diagnosis and improved patient care.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence is growing for a role of Waddlia chondrophila as an agent of adverse pregnancy outcomes in both humans and ruminants. This emerging pathogen, member of the order Chlamydiales, is also implicated in bronchiolitis and lower respiratory tract infections. Until now, the serological diagnosis of W. chondrophila infection has mainly relied on manually intensive tests including micro-immunofluorescence and Western blotting. Thus, there is an urgent need to establish reliable high throughput serological assays. Using a combined genomic and proteomic approach, we detected 57 immunogenic proteins of W. chondrophila, of which 17 were analysed by mass spectrometry. Two novel hypothetical proteins, Wim3 and Wim4, were expressed as recombinant proteins in Escherichia coli, purified and used as antigens in an ELISA test. Both proteins were recognized by sera of rabbits immunized with W. chondrophila as well as by human W. chondrophila positive sera but not by rabbit pre-immune sera nor human W. chondrophila negative sera. These results demonstrated that the approach chosen is suitable to identify immunogenic proteins that can be used to develop a serological test. This latter will be a valuable tool to further clarify the pathogenic potential of W. chondrophila.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interleukin 1 beta (IL-1 beta) is a potent proinflammatory factor during viral infection. Its production is tightly controlled by transcription of Il1b dependent on the transcription factor NF-kappaB and subsequent processing of pro-IL-1 beta by an inflammasome. However, the sensors and mechanisms that facilitate RNA virus-induced production of IL-1 beta are not well defined. Here we report a dual role for the RNA helicase RIG-I in RNA virus-induced proinflammatory responses. Whereas RIG-I-mediated activation of NF-kappaB required the signaling adaptor MAVS and a complex of the adaptors CARD9 and Bcl-10, RIG-I also bound to the adaptor ASC to trigger caspase-1-dependent inflammasome activation by a mechanism independent of MAVS, CARD9 and the Nod-like receptor protein NLRP3. Our results identify the CARD9-Bcl-10 module as an essential component of the RIG-I-dependent proinflammatory response and establish RIG-I as a sensor able to activate the inflammasome in response to certain RNA viruses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mating with attractive or dominant males is often predicted to offer indirect genetic benefits to females, but it is still largely unclear how important such non-random mating can be with regard to embryo viability. We sampled a natural population of adult migratory brown trout (Salmo trutta), bred them in vitro in a half-sib breeding design to separate genetic from maternal environmental effects, raised 2098 embryos singly until hatching, and exposed them experimentally to different levels of pathogen stress at a late embryonic stage. We found that the embryos' tolerance to the induced pathogen stress was linked to the major histocompatibility complex (MHC) of their parents, i.e. certain MHC genotypes appeared to provide better protection against infection than others. We also found significant additive genetic variance for stress tolerance. Melanin-based dark skin patterns revealed males with 'good genes', i.e. embryos fathered by dark coloured males had a high tolerance to infection. Mating with large and dominant males would, however, not improve embryo viability when compared to random mating. We used simulations to provide estimates of how mate choice based on MHC or melanin-based skin patterns would influence embryos' tolerance to the experimentally induced pathogen stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Innate immune responses play a central role in neuroprotection and neurotoxicity during inflammatory processes that are triggered by pathogen-associated molecular pattern-exhibiting agents such as bacterial lipopolysaccharide (LPS) and that are modulated by inflammatory cytokines such as interferon γ (IFNγ). Recent findings describing the unexpected complexity of mammalian genomes and transcriptomes have stimulated further identification of novel transcripts involved in specific physiological and pathological processes, such as the neural innate immune response that alters the expression of many genes. We developed a system for efficient subtractive cloning that employs both sense and antisense cRNA drivers, and coupled it with in-house cDNA microarray analysis. This system enabled effective direct cloning of differentially expressed transcripts, from a small amount (0.5 µg) of total RNA. We applied this system to isolation of genes activated by LPS and IFNγ in primary-cultured cortical cells that were derived from newborn mice, to investigate the mechanisms involved in neuroprotection and neurotoxicity in maternal/perinatal infections that cause various brain injuries including periventricular leukomalacia. A number of genes involved in the immune and inflammatory response were identified, showing that neonatal neuronal/glial cells are highly responsive to LPS and IFNγ. Subsequent RNA blot analysis revealed that the identified genes were activated by LPS and IFNγ in a cooperative or distinctive manner, thereby supporting the notion that these bacterial and cellular inflammatory mediators can affect the brain through direct but complicated pathways. We also identified several novel clones of apparently non-coding RNAs that potentially harbor various regulatory functions. Characterization of the presently identified genes will give insights into mechanisms and interventions not only for perinatal infection-induced brain damage, but also for many other innate immunity-related brain disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We sought to provide a contemporary picture of the presentation, etiology, and outcome of infective endocarditis (IE) in a large patient cohort from multiple locations worldwide. Prospective cohort study of 2781 adults with definite IE who were admitted to 58 hospitals in 25 countries from June 1, 2000, through September 1, 2005. The median age of the cohort was 57.9 (interquartile range, 43.2-71.8) years, and 72.1% had native valve IE. Most patients (77.0%) presented early in the disease (<30 days) with few of the classic clinical hallmarks of IE. Recent health care exposure was found in one-quarter of patients. Staphylococcus aureus was the most common pathogen (31.2%). The mitral (41.1%) and aortic (37.6%) valves were infected most commonly. The following complications were common: stroke (16.9%), embolization other than stroke (22.6%), heart failure (32.3%), and intracardiac abscess (14.4%). Surgical therapy was common (48.2%), and in-hospital mortality remained high (17.7%). Prosthetic valve involvement (odds ratio, 1.47; 95% confidence interval, 1.13-1.90), increasing age (1.30; 1.17-1.46 per 10-year interval), pulmonary edema (1.79; 1.39-2.30), S aureus infection (1.54; 1.14-2.08), coagulase-negative staphylococcal infection (1.50; 1.07-2.10), mitral valve vegetation (1.34; 1.06-1.68), and paravalvular complications (2.25; 1.64-3.09) were associated with an increased risk of in-hospital death, whereas viridans streptococcal infection (0.52; 0.33-0.81) and surgery (0.61; 0.44-0.83) were associated with a decreased risk. In the early 21st century, IE is more often an acute disease, characterized by a high rate of S aureus infection. Mortality remains relatively high.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent roll-out of rapid diagnostic tests (RDTs) for malaria has highlighted the decreasing proportion of malaria-attributable illness in endemic areas. Unfortunately, once malaria is excluded, there are few accessible diagnostic tools to guide the management of severe febrile illnesses in low resource settings. This review summarizes the current state of RDT development for several key infections, including dengue fever, enteric fever, leptospirosis, brucellosis, visceral leishmaniasis and human African trypanosomiasis, and highlights many remaining gaps. Most RDTs for non-malarial tropical infections currently rely on the detection of host antibodies against a single infectious agent. The sensitivity and specificity of host-antibody detection tests are both inherently limited. Moreover, prolonged antibody responses to many infections preclude the use of most serological RDTs for monitoring response to treatment and/or for diagnosing relapse. Considering these limitations, there is a pressing need for sensitive pathogen-detection-based RDTs, as have been successfully developed for malaria and dengue. Ultimately, integration of RDTs into a validated syndromic approach to tropical fevers is urgently needed. Related research priorities are to define the evolving epidemiology of fever in the tropics, and to determine how combinations of RDTs could be best used to improve the management of severe and treatable infections requiring specific therapy.