682 resultados para Ortho-Synapse
Resumo:
We found high levels of contaminants, in particular organochlorines, in eggs of the ivory gull Pagophila eburnea, a high Arctic seabird species threatened by climate change and contaminants. An 80% decline in the ivory gull breeding population in the Canadian Arctic the last two decades has been documented. Because of the dependence of the ivory gull on sea ice and its high trophic position, suggested environmental threats are climate change and contaminants. The present study investigated contaminant levels (organochlorines, brominated flame retardants, perfluorinated alkyl substances, and mercury) in ivory gull eggs from four colonies in the Norwegian Svalbard) and Russian Arctic (Franz Josef Land and Severnaya Zemlya). The contaminant levels presented here are among the highest reported in Arctic seabird species, and we identify this as an important stressor in a species already at risk due to environmental change.
Resumo:
We investigated the multivariate relationships between adipose tissue residue levels of 48 individual organohalogen contaminants (OHCs) and circulating thyroid hormone (TH) levels in polar bears (Ursus maritimus) from East Greenland (1999-2001, n = 62), using projection to latent structure (PLS) regression for four groupings of polar bears; subadults (SubA), adult females with cubs (AdF_N), adult females without cubs (AdF_S) and adult males (AdM). In the resulting significant PLS models for SubA, AdF_N and AdF_S, some OHCs were especially important in explaining variations in circulating TH levels: polybrominated diphenylether (PBDE)-99, PBDE-100, PBDE-153, polychlorinated biphenyl (PCB)-52, PCB-118, cis-nonachlor, trans-nonachlor, trichlorobenzene (TCB) and pentachlorobenzene (QCB), and both negative and positive relationships with THs were found. In addition, the models revealed that DDTs had a positive influence on total 3,5,3'-triiodothyronine (TT3) in AdF_S, and that a group of 17 higher chlorinated ortho-PCBs had a positive influence on total 3,5,3',5'-tetraiodothyronine (thyroxine, TT4) in AdF_N. TH levels in AdM seemed less influenced by OHCs because of non-significant PLS models. TH levels were also influenced by biological factors such as age, sex, body size, lipid content of adipose tissue and sampling date. When controlling for biological variables, the major relationships from the PLS models for SubA, AdF_N and AdF_S were found significant in partial correlations. The most important OHCs that influenced TH levels in the significant PLS models may potentially act through similar mechanisms on the hypothalamic-pituitary-thyroid (HPT) axis, suggesting that both combined effects by dose and response addition and perhaps synergistic potentiation may be a possibility in these polar bears. Statistical associations are not evidence per se of biological cause-effect relationships. Still, the results of the present study indicate that OHCs may affect circulating TH levels in East Greenland polar bears, adding to the "weight of evidence" suggesting that OHCs might interfere with thyroid homeostasis in polar bears.
Resumo:
Continuous and comparable atmospheric monitoring programs to study the transport and occurrence of persistent organic pollutants (POPs) in the atmosphere of remote regions is essential to better understand the global movement of these chemicals and to evaluate the effectiveness of international control measures. Key results from four main Arctic research stations, Alert (Canada), Pallas (Finland), Storhofdi (Iceland) and Zeppelin (Svalbard/Norway), where long-term monitoring have been carried out since the early 1990s, are summarized. We have also included a discussion of main results from various Arctic satellite stations in Canada, Russia, US (Alaska) and Greenland which have been operational for shorter time periods. Using the Digital Filtration temporal trend development technique, it was found that while some POPs showed more or less consistent declines during the 1990s, this reduction is less apparent in recent years at some sites. In contrast, polybrominated diphenyl ethers (PBDEs) were still found to be increasing by 2005 at Alert with doubling times of 3.5 years in the case of deca-BDE. Levels and patterns of most POPs in Arctic air are also showing spatial variability, which is typically explained by differences in proximity to suspected key source regions and long-range atmospheric transport potentials. Furthermore, increase in worldwide usage of certain pesticides, e.g. chlorothalonil and quintozene, which are contaminated with hexachlorobenzene (HCB), may result in an increase in Arctic air concentration of HCB. The results combined also indicate that both temporal and spatial patterns of POPs in Arctic air may be affected by various processes driven by climate change, such as reduced ice cover, increasing seawater temperatures and an increase in biomass burning in boreal regions as exemplified by the data from the Zeppelin and Alert stations. Further research and continued air monitoring are needed to better understand these processes and its future impact on the Arctic environment.
Resumo:
Polychlorinated biphenyls (PCBs) may induce activity of hepatic enzymes, mainly Phase I monooxygenases and conjugating Phase II enzymes, that catalyze the metabolism of PCBs leading to formation of metabolites and to potential adverse health effects. The present study investigates the concentration and pattern of PCBs, the induction of hepatic phase I and II enzymes, and the formation of hydroxy (OH) and methylsulfonyl (CH3SO2=MeSO2) PCB metabolites in two ringed seal (Phoca hispida) populations, which are contrasted by the degree of contamination exposure, that is, highly contaminated Baltic Sea (n = 31) and less contaminated Svalbard (n = 21). Phase I enzymes were measured as ethoxyresorufin-O-deethylation (EROD), benzyloxyresorufin-O-dealkylation (BROD), methoxyresorufin-O-demethylation (MROD), and pentoxyresorufin-O-dealkylation (PROD) activities, and phase II enzymes were measured as uridine diphosphophate glucuronosyl transferase (UDPGT) and glutathione-S-transferase (GST). Geographical comparison, multivariate, and correlation analysis indicated that sum-PCB had a positive impact on Phase I enzyme and GST activities leading to biotransformation of group III (vicinal ortho-meta-H atoms and <=1 ortho-chlorine (Cl)) and IV PCBs (vicinal meta-para-H atoms and <=2 ortho-Cl). The potential precursors for the main OH-PCBs detected in plasma in the Baltic seals were group III PCBs. MeSO2-PCBs detected in liver were mainly products of group IV PCB metabolism. Both CYP1A- and CYP2B-like enzymes are suggested to be involved in the PCB biotransformation in ringed seals.
Resumo:
Although long-range atmospheric transport has been described as the predominant mechanism for exposing polar regions to persistent organic pollutants (POPs), recent studies have suggested that bird activity can also contribute substantially to contaminant levels in some environments. However, because the species so far reported have all been migratory, it has not been demonstrated conclusively whether locally elevated contamination represents transport from lower latitudes by the migrating birds or, alternatively, redistribution and concentration of contaminants that were already present in the high-latitude environments. The present study demonstrates, for the first time, that several POPs are present in elevated concentrations in an environment frequented by a non-migratory species (Adelie penguins) that spends its entire life in the Antarctic. Levels of POPs, such as p,p'-DDE, hexachlorobenzene (HCB), chlordanes (CHLs) and polychlorinated biphenyls (PCBs), were 10 to 100-fold higher in soil samples from penguin colonies than from reference areas. This significant difference is likely related to local penguin activity, such as a higher abundance of guano and the presence of bird carcasses. This hypothesis is also supported by a higher percentage of persistent congeners (PCB 99, 118, 138 and 153) in the soil from the colonies compared to the reference areas. This profile of PCB congeners closely matched profiles seen in penguin eggs or penguin blood.
Resumo:
The basement of southern Kirwanveggen (western Dronning Maud Land) is formed by a SSW-dipping section consisting of (from SW to NE): migmatic gneisses; granitoid; low-grade/prograde meta-pelites, meta-psammites and meta-basalts (= "Polaris Formation"); ortho-gneiss; quartzite mylonite; Polaris Formation; quartzite mylonite; meta-turbidites. These units are (partly) separated by at least four SSW-dipping, NE to N directed major thrusts. Most probably, this thrust system is of Pan-African age. Towards north, the section is followed by the molasse-like Urfjell Group, deposited later than approx. 550 Ma and earlier than 450 Ma. Similarities with the Pan-African of the Shackleton Range (thrusting, molasse) led to the assumption, that the East/West Gondwana suture runs from the Shackleton Range towards Sor Rondane (eastern Dronning Maud Land) passing southern Kirwanveggen at its south-east.
Resumo:
As an example for the representation of glaciers using orthophoto maps the new map "Langtaler Ferner 1971" is presented. The orthophoto map shows the glacier "Langtaler Ferner" in the Oetztal Alps (Austria) on August 18, 1971. Apart from a description of the map production and a discussion of the advantages and disadvantages of such ortho- photo maps for the representation of glacierized areas, the stage of the "Langtaler Ferner" at the time of the ftight is described. A comparison with some data of previollsly published maps is also included.
Resumo:
Recent research has discovered high-grade Au ores in NNE-SSW trending shear zones in metamorphic proterozoic and palaeozoic terranes, some 40 km NW of Santiago de Compostela (NW Spain). The orebodies are bound to late-stage Hercynian structures, mainly due to brittle deformation, which are superimposed on earlier ductile shear zones, cutting through various catazonal lithologies, including ortho- and paragneisses, amphibolites, eclogites, and granites. Ore mineralogy, alteration, and ore textures define a frame whose main features are common to all prospects in the area. Main minerals are arsenopyrite and pyrite - accompanied by quartz, adularia, sericite, + (tourmaline, chlorite, carbonates, graphite), as main gangue minerals - with subordinate amounts of boulangerite, bismuthinite, kobellite, jamesonite, chalcopyrite, marcasite, galena, sphalerite, rutile, titanite, scheelite, beryl, fluorite, and minor native gold, electrum, native bismuth, fahlore, pyrrhotite, mackinawite, etc., defining a meso-catathermal paragenesis. Detailed microscopic study allows the author to propose a general descriptive scheme of textural classification for this type of ore. Most of the ores fill open spaces or veins, seal cracks or cement breccias; disseminated ores with replacement features related to alteration (mainly silicification, sericitization, and adularization) are also observed. Intensive and repeated cataclasis is a common feature of many ores, suggesting successive events of brittle deformation, hydrothermal flow, and ore precipitation. Gold may be transported and accumulated in any of these events, but tends to be concentrated in later ones. The origin of the gold ores is explained in terms of hydrotherreal discharge, associated with mainly brittle deformation and possibly related to granitic magmas, in the global tectonic frame of crustal evolution of West Galicia. The mineralogical and textural study suggests some criteria which will be of practical value for exploration and for ore processing. Ore grades can be improved by flotation of arsenopyrite. Non-conventional methods, such as pressure or bacterial leaching, may subsequently obtain a residue enriched in gold.
Resumo:
We fabricate a biometric laser fiber synaptic sensor to transmit information from one neuron cell to the other by an optical way. The optical synapse is constructed on the base of an erbium-doped fiber laser, whose pumped diode current is driven by a pre-synaptic FitzHugh–Nagumo electronic neuron, and the laser output controls a post-synaptic FitzHugh–Nagumo electronic neuron. The implemented laser synapse displays very rich dynamics, including fixed points, periodic orbits with different frequency-locking ratios and chaos. These regimes can be beneficial for efficient biorobotics, where behavioral flexibility subserved by synaptic connectivity is a challenge.
Resumo:
The biggest problem when analyzing the brain is that its synaptic connections are extremely complex. Generally, the billions of neurons making up the brain exchange information through two types of highly specialized structures: chemical synapses (the vast majority) and so-called gap junctions (a substrate of one class of electrical synapse). Here we are interested in exploring the three-dimensional spatial distribution of chemical synapses in the cerebral cortex. Recent research has showed that the three-dimensional spatial distribution of synapses in layer III of the neocortex can be modeled by a random sequential adsorption (RSA) point process, i.e., synapses are distributed in space almost randomly, with the only constraint that they cannot overlap. In this study we hypothesize that RSA processes can also explain the distribution of synapses in all cortical layers. We also investigate whether there are differences in both the synaptic density and spatial distribution of synapses between layers. Using combined focused ion beam milling and scanning electron microscopy (FIB/SEM), we obtained three-dimensional samples from the six layers of the rat somatosensory cortex and identified and reconstructed the synaptic junctions. A total volume of tissue of approximately 4500μm3 and around 4000 synapses from three different animals were analyzed. Different samples, layers and/or animals were aggregated and compared using RSA replicated spatial point processes. The results showed no significant differences in the synaptic distribution across the different rats used in the study. We found that RSA processes described the spatial distribution of synapses in all samples of each layer. We also found that the synaptic distribution in layers II to VI conforms to a common underlying RSA process with different densities per layer. Interestingly, the results showed that synapses in layer I had a slightly different spatial distribution from the other layers.
Resumo:
In the cerebral cortex, most synapses are found in the neuropil, but relatively little is known about their 3-dimensional organization. Using an automated dual-beam electron microscope that combines focused ion beam milling and scanning electron microscopy, we have been able to obtain 10 three-dimensional samples with an average volume of 180 µm(3) from the neuropil of layer III of the young rat somatosensory cortex (hindlimb representation). We have used specific software tools to fully reconstruct 1695 synaptic junctions present in these samples and to accurately quantify the number of synapses per unit volume. These tools also allowed us to determine synapse position and to analyze their spatial distribution using spatial statistical methods. Our results indicate that the distribution of synaptic junctions in the neuropil is nearly random, only constrained by the fact that synapses cannot overlap in space. A theoretical model based on random sequential absorption, which closely reproduces the actual distribution of synapses, is also presented.