940 resultados para Offshore electric power plants.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the possibility of real-time interaction with three-dimensional environments through an advanced interface, Virtual Reality consist in the main technology of this work, used in the design of virtual environments based on real Hydroelectric Plants. Previous to the process of deploying a Virtual Reality System for operation, three-dimensional modeling and interactive scenes settings are very importante steps. However, due to its magnitude and complexity, power plants virtual environments generation, currently, presents high computing cost. This work aims to present a methodology to optimize the production process of virtual environments associated with real hydroelectric power plants. In partnership with electric utility CEMIG, several HPPs were used in the scope of this work. During the modeling of each one of them, the techiniques within the methodologie were addressed. After the evaluation of the computional techniques presented here, it was possible to confirm a reduction in the time required to deliver each hydroelectrical complex. Thus, this work presents the current scenario about development of virtual hydroelectric power plants and discusses the proposed methodology that seeks to optimize this process in the electricity generation sector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project is funded by European Research Council in FP7; grant no 259328, 2010 and EPSRC grant no EP/K006428/1, 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project is funded by European Research Council in FP7; grant no 259328, 2010 and EPSRC grant no EP/K006428/1, 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microturbines are among the most successfully commercialized distributed energy resources, especially when they are used for combined heat and power generation. However, the interrelated thermal and electrical system dynamic behaviors have not been fully investigated. This is technically challenging due to the complex thermo-fluid-mechanical energy conversion processes which introduce multiple time-scale dynamics and strong nonlinearity into the analysis. To tackle this problem, this paper proposes a simplified model which can predict the coupled thermal and electric output dynamics of microturbines. Considering the time-scale difference of various dynamic processes occuring within microturbines, the electromechanical subsystem is treated as a fast quasi-linear process while the thermo-mechanical subsystem is treated as a slow process with high nonlinearity. A three-stage subspace identification method is utilized to capture the dominant dynamics and predict the electric power output. For the thermo-mechanical process, a radial basis function model trained by the particle swarm optimization method is employed to handle the strong nonlinear characteristics. Experimental tests on a Capstone C30 microturbine show that the proposed modeling method can well capture the system dynamics and produce a good prediction of the coupled thermal and electric outputs in various operating modes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microturbines are among the most successfully commercialized distributed energy resources, especially when they are used for combined heat and power generation. However, the interrelated thermal and electrical system dynamic behaviors have not been fully investigated. This is technically challenging due to the complex thermo-fluid-mechanical energy conversion processes which introduce multiple time-scale dynamics and strong nonlinearity into the analysis. To tackle this problem, this paper proposes a simplified model which can predict the coupled thermal and electric output dynamics of microturbines. Considering the time-scale difference of various dynamic processes occuring within microturbines, the electromechanical subsystem is treated as a fast quasi-linear process while the thermo-mechanical subsystem is treated as a slow process with high nonlinearity. A three-stage subspace identification method is utilized to capture the dominant dynamics and predict the electric power output. For the thermo-mechanical process, a radial basis function model trained by the particle swarm optimization method is employed to handle the strong nonlinear characteristics. Experimental tests on a Capstone C30 microturbine show that the proposed modeling method can well capture the system dynamics and produce a good prediction of the coupled thermal and electric outputs in various operating modes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermoelectric materials are revisited for various applications including power generation. The direct conversion of temperature differences into electric voltage and vice versa is known as thermoelectric effect. Possible applications of thermoelectric materials are in eco-friendly refrigeration, electric power generation from waste heat, infrared sensors, temperature controlled-seats and portable picnic coolers. Thermoelectric materials are also extensively researched upon as an alternative to compression based refrigeration. This utilizes the principle of Peltier cooling. The performance characteristic of a thermoelectric material, termed as figure of merit (ZT) is a function of several transport coefficients such as electrical conductivity (σ), thermal conductivity (κ) and Seebeck coefficient of the material (S). ZT is expressed asκσTZTS2=, where T is the temperature in degree absolute. A large value of Seebeck coefficient, high electrical conductivity and low thermal conductivity are necessary to realize a high performance thermoelectric material. The best known thermoelectric materials are phonon-glass electron – crystal (PGEC) system where the phonons are scattered within the unit cell by the rattling structure and electrons are scattered less as in crystals to obtain a high electrical conductivity. A survey of literature reveals that correlated semiconductors and Kondo insulators containing rare earth or transition metal ions are found to be potential thermoelectric materials. The structural magnetic and charge transport properties in manganese oxides having the general formula of RE1−xAExMnO3 (RE = rare earth, AE= Ca, Sr, Ba) are solely determined by the mixed valence (3+/4+) state of Mn ions. In strongly correlated electron systems, magnetism and charge transport properties are strongly correlated. Within the area of strongly correlated electron systems the study of manganese oxides, widely known as manganites exhibit unique magneto electric transport properties, is an active area of research.Strongly correlated systems like perovskite manganites, characterized by their narrow localized band and hoping conduction, were found to be good candidates for thermoelectric applications. Manganites represent a highly correlated electron system and exhibit a variety of phenomena such as charge, orbital and magnetic ordering, colossal magneto resistance and Jahn-Teller effect. The strong inter-dependence between the magnetic order parameters and the transport coefficients in manganites has generated much research interest in the thermoelectric properties of manganites. Here, large thermal motion or rattling of rare earth atoms with localized magnetic moments is believed to be responsible for low thermal conductivity of these compounds. The 4f levels in these compounds, lying near the Fermi energy, create large density of states at the Fermi level and hence they are likely to exhibit a fairly large value of Seebeck coefficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Offshore wind power emits low amounts of gases, is renewable and has better performance than onshore due to its greater stability and higher wind power density, less visual and noise impact, among others. Brazil has a high capacity of generation, but has not yet developed any offshore projects. High costs are a strong impediment. This study is an effort towards pricing offshore resources through Livelized Cost of Energy - LCOE, which represents the minimum return to cover the costs of development, production and maintenance of a wind project. Initially LCOE was calculated for all Brazilian onshore wind farms listed at Bloomberg New Energy Finance R○, accounting for 71 farms. Then hypothetical offshore wind farms were created from the onshore farms, tripling the cost of generation, which is consistent with the literature, and estimating the offshore energy for two locations off the Brazilian coast using satellite data extracted from National Oceanic and Atmospheric Administration. The results demonstrate that offshore resources have the potential to significantly reduce the energy price due to the better performance of the wind at sea

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical control of water hyacinth consists of removing the plants from the water by hand or machines. It is considered over effetive because it involves removing the whole plants from water. The first attempt on physical control was in 1992 when weed infestation was causing serious problems to the fishing communities in Lake Kyoga. The fishermen had problems of accessing the lake as huge masses of mobile weed blocked landing sites. Furthermore, the fishers lost their nets, which were swept away by mobile water hyacinth. As a result, an integrated control strategy involving physical control (manual and mechanical removal) was put in place. Through this method, the fishers were able to open up access routes to fishing grounds even though weed mats often reblocked the access routes. In the infested lakes, manual removal offered remedial relief to fish Iandings and other access sites. Sites of strategic importance such as hydro-electric power generation dam, water intake points and docking points which had large masses of water hyacinth required heavy machinery and mechanical harvesters were used at these sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tämä diplomityö tutkii eri elinkaarihallinnan menetelmiä ja vertaa niitä TVO:n menetelmiin. Lisäksi TVO:n prosessin ongelmakohdat tunnistetaan ja niihin esitetään ratkaisuja. Vertailukohteina toimii ydinvoimateollisuuden lisäksi vesivoima, fossiiliset voimalaitokset sekä paperiteollisuus. Sähkön hinnan jatkaessa laskuaan on elinkaariajattelusta tullut ajankohtaista myös ydinvoimayhtiöille. Ydinvoimalaitoksien pitkän suunnitellun käyttöiän ansiosta laitoksen elinkaaren aikana voi tapahtua useita asioita, jotka vaikuttavat laitoksen investointitarpeisiin. Turvallisen sähköntuotannon varmistamiseksi eri laitososia on joko muokattava tai uusittava. Elinkaariajatteluun kuuluu tehokas laitoksen kunnon valvonta, laitoksen ikääntymiseen vaikuttavien ilmiöiden tunnistaminen, sekä ikääntymistä hillitsevien toimenpiteiden pitkän tähtäimen suunnittelu. Hyvällä ennakkosuunnittelulla pyritään varmistamaan se, että laitoksella voidaan tuottaa sähköä koko sen jäljellä olevan käyttöiän aikana. Kun tarpeiden tunnistus ja suunnittelu tehdään hyvissä ajoin mahdollistetaan myös investointien optimointi. Paras hyöty pyritään saamaan ajoittamalla oikeat investoinnit oikeaan aikaan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electric power systems are getting more complex and covering larger areas day by day. This fact has been contribuiting to the development of monitoring techniques that aim to help the analysis, control and planning of power systems. Supervisory Control and Data Acquisition (SCADA) systems, Wide Area Measurement Systems and disturbance record systems. Unlike SCADA and WAMS, disturbance record systems are mainly used for offilne analysis in occurrences where a fault resulted in tripping of and apparatus such as a transimission line, transformer, generator and so on. The device responsible for record the disturbances is called Digital Fault Recorder (DFR) and records, basically, electrical quantities as voltage and currents and also, records digital information from protection system devices. Generally, in power plants, all the DFRs data are centralized in the utility data centre and it results in an excess of data that difficults the task of analysis by the specialist engineers. This dissertation shows a new methodology for automated analysis of disturbances in power plants. A fuzzy reasoning system is proposed to deal with the data from the DFRs. The objective of the system is to help the engineer resposnible for the analysis of the DFRs’s information by means of a pre-classification of data. For that, the fuzzy system is responsible for generating unit operational state diagnosis and fault classification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Offshore wind power emits low amounts of gases, is renewable and has better performance than onshore due to its greater stability and higher wind power density, less visual and noise impact, among others. Brazil has a high capacity of generation, but has not yet developed any offshore projects. High costs are a strong impediment. This study is an effort towards pricing offshore resources through Livelized Cost of Energy - LCOE, which represents the minimum return to cover the costs of development, production and maintenance of a wind project. Initially LCOE was calculated for all Brazilian onshore wind farms listed at Bloomberg New Energy Finance R○, accounting for 71 farms. Then hypothetical offshore wind farms were created from the onshore farms, tripling the cost of generation, which is consistent with the literature, and estimating the offshore energy for two locations off the Brazilian coast using satellite data extracted from National Oceanic and Atmospheric Administration. The results demonstrate that offshore resources have the potential to significantly reduce the energy price due to the better performance of the wind at sea

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the behavior of spot prices in the Colombian wholesale power market, using a series of models derived from industrial organization theory -- We first create a Cournot-based model that simulates the strategic behavior of the market-leader power generators, which we use to estimate two industrial organization variables, the Index of Residual Demand and the Herfindahl-Hirschman Index (HHI) -- We use these variables to create VAR models that estimate spot prices and power market impulse-response relationships -- The results from these models show that hydroelectric generators can use their water storage capability strategically to affect off-peak prices primarily, while the thermal generators can manage their capacity strategically to affect on-peak prices -- In addition, shocks to the Index of Residual Capacity and to the HHI cause spot price fluctuations, which can be interpreted as the generators´ strategic response to these shocks

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2015.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system’s dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power system policies are broadly on track to escalate the use of renewable energy resources in electric power generation. Integration of dispersed generation to the utility network not only intensifies the benefits of renewable generation but also introduces further advantages such as power quality enhancement and freedom of power generation for the consumers. However, issues arise from the integration of distributed generators to the existing utility grid are as significant as its benefits. The issues are aggravated as the number of grid-connected distributed generators increases. Therefore, power quality demands become stricter to ensure a safe and proper advancement towards the emerging smart grid. In this regard, system protection is the area that is highly affected as the grid-connected distributed generation share in electricity generation increases. Islanding detection, amongst all protection issues, is the most important concern for a power system with high penetration of distributed sources. Islanding occurs when a portion of the distribution network which includes one or more distributed generation units and local loads is disconnected from the remaining portion of the grid. Upon formation of a power island, it remains energized due to the presence of one or more distributed sources. This thesis introduces a new islanding detection technique based on an enhanced multi-layer scheme that shows superior performance over the existing techniques. It provides improved solutions for safety and protection of power systems and distributed sources that are capable of operating in grid-connected mode. The proposed active method offers negligible non-detection zone. It is applicable to micro-grids with a number of distributed generation sources without sacrificing the dynamic response of the system. In addition, the information obtained from the proposed scheme allows for smooth transition to stand-alone operation if required. The proposed technique paves the path towards a comprehensive protection solution for future power networks. The proposed method is converter-resident and all power conversion systems that are operating based on power electronics converters can benefit from this method. The theoretical analysis is presented, and extensive simulation results confirm the validity of the analytical work.