968 resultados para ONE-DIMENSIONAL NANOSTRUCTURES


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The numerical solution of fractional partial differential equations poses significant computational challenges in regard to efficiency as a result of the spatial nonlocality of the fractional differential operators. The dense coefficient matrices that arise from spatial discretisation of these operators mean that even one-dimensional problems can be difficult to solve using standard methods on grids comprising thousands of nodes or more. In this work we address this issue of efficiency for one-dimensional, nonlinear space-fractional reaction–diffusion equations with fractional Laplacian operators. We apply variable-order, variable-stepsize backward differentiation formulas in a Jacobian-free Newton–Krylov framework to advance the solution in time. A key advantage of this approach is the elimination of any requirement to form the dense matrix representation of the fractional Laplacian operator. We show how a banded approximation to this matrix, which can be formed and factorised efficiently, can be used as part of an effective preconditioner that accelerates convergence of the Krylov subspace iterative solver. Our approach also captures the full contribution from the nonlinear reaction term in the preconditioner, which is crucial for problems that exhibit stiff reactions. Numerical examples are presented to illustrate the overall effectiveness of the solver.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) and graphene are two representative nanomaterials comprised of purely element carbon [1,2]. Graphene is the two-dimensional, hexagonal sp2-carbon ring networks with one atomic layer thickness, while CNTs can be envisaged as one or several graphene sheets concentrically rolled up into a one-dimensional cylindrical structure, so-called singlewalled (SW) or multi-walled (MW) CNTs, respectively. Figure 12.1 shows the schematic diagram of structures of graphene, SWCNT and MWCNT. Owing to their exceptional mechanical, electrical, optical and thermal properties, CNTs and graphene have been widely considered as a new type of materials with great potentials to revolutionalize many of the biological and medical fields [3–5].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background The Spine Functional Index (SFI) is a recently published, robust and clinimetrically valid patient reported outcome measure. Objectives The purpose of this study was the adaptation and validation of a Spanish-version (SFI-Sp) with cultural and linguistic equivalence. Methods A two stage observational study was conducted. The SFI was cross-culturally adapted to Spanish through double forward and backward translation then validated for its psychometric characteristics. Participants (n = 226) with various spine conditions of >12 weeks duration completed the SFI-Sp and a region specific measure: for the back, the Roland Morris Questionnaire (RMQ) and Backache Index (BADIX); for the neck, the Neck Disability Index (NDI); for general health the EQ-5D and SF-12. The full sample was employed to determine internal consistency, concurrent criterion validity by region and health, construct validity and factor structure. A subgroup (n = 51) was used to determine reliability at seven days. Results The SFI-Sp demonstrated high internal consistency (α = 0.85) and reliability (r = 0.96). The factor structure was one-dimensional and supported construct validity. Criterion specific validity for function was high with the RMQ (r = 0.79), moderate with the BADIX (r = 0.59) and low with the NDI (r = 0.46). For general health it was low with the EQ-5D and inversely correlated (r = −0.42) and fair with the Physical and Mental Components of the SF-12 and inversely correlated (r = −0.56 and r = −0.48), respectively. The study limitations included the lack of longitudinal data regarding other psychometric properties, specifically responsiveness. Conclusions The SFI-Sp was demonstrated as a valid and reliable spine-regional outcome measure. The psychometric properties were comparable to and supported those of the English-version, however further longitudinal investigations are required.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In continuum one-dimensional space, a coupled directed continuous time random walk model is proposed, where the random walker jumps toward one direction and the waiting time between jumps affects the subsequent jump. In the proposed model, the Laplace-Laplace transform of the probability density function P(x,t) of finding the walker at position at time is completely determined by the Laplace transform of the probability density function φ(t) of the waiting time. In terms of the probability density function of the waiting time in the Laplace domain, the limit distribution of the random process and the corresponding evolving equations are derived.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The production mechanism of OH radicals in a pulsed DC plasma jet is studied by a two-dimensional (2-D) plasma jet model and a one-dimensional (1-D) discharge model. For the plasma jet in the open air, electron-impact dissociation of H2O, electron neutralization of H2O+, as well as dissociation of H2O by O(1D) are found to be the main reactions to generate the OH species. The contribution of the dissociation of H2O by electron is more than the others. The additions of N2, O2, air, and H2O into the working gas increase the OH density outside the tube slightly, which is attributed to more electrons produced by Penning ionization. On the other hand, the additions of O2 and H2O into the working gas increase the OH density inside the tube substantially, which is attributed to the increased O (1D) and H2O concentration, respectively. The gas flow will transport high density OH out of the tube during pulse off period. It is also shown that the plasma chemistry and reactivity can be effectively controlled by the pulse numbers. These results are supported by the laser induced fluorescence measurements and are relevant to several applications of atmospheric-pressure plasmas in health care, medicine, and materials processing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The anhydrous salts morpholinium (tetrahydro-2-H-1,4-oxazine) phenxyacetate, C4H10NO+ C8H7O3- (I), (4-fluorophenoxy)acetate, C4H10NO+ C8H6FO3- (II) and isomeric morpholinium (3,5-dichlorophenoxy)acetate (3,5-D) (III) and morpholinium (2,4-dichlorophenoxy)acetate (2,4-D), C4H10NO+ C8H5Cl2O3- (IV), have been determined and their hydrogen-bonded structures are described. In the crystals of (I), (III) and (IV), one of the the aminium H atoms is involved in a three-centre asymmetric cation-anion N-H...O,O' R2/1(4) hydrogen-bonding interaction with the two carboxyl O-atom acceptors of the anion. With the structure of (II), the primary N---H...O interaction is linear. In the structures of (I), (II) and (III), the second N-H...O(carboxyl) hydrogen bond generates one-dimensional chain structures extending in all cases along [100]. With (IV), the ion pairs are linked though inversion-related N-H...O hydrogen bonds [graph set R2/4(8)], giving a cyclic heterotetrameric structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the anhydrous salt formed from the reaction of morpholine with cinnamic acid, C4H10NO+ C9H7O2-, the acid side chain in the trans-cinnamate anion is significantly rotated out of the benzene plane [C-C-C-C torsion angle = 158.54(17)deg. In the crystal, one of the the aminium H atoms is involved in a asymmetric three-centre cation-anion N-H...(O,O') R2/1(4) hydrogen-bonding interaction with the two carboxyl O-atom acceptors of the anion. The second aminium H atom forms an inter-species N-H...O(carboxyl) hydrogen bond, generating a one-dimensional chain structure extending along [100]. Chains are linked by C-H...O interactions forming a supramolecular layer parallel to (01-1).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

"Rereading the historical record indicates that it is no longer so easy to argue that history is simply prior to its forms. Since the mid-1990s a new wave of research has formed around wider debates in the humanities and social sciences, such as decentering the subject, new analytics of power, reconsideration of one-dimensional time and three-dimensional space, attention to beyond-archival sources, alterity, Otherness, the invisible, and more. In addition, broader and contradictory impulses around the question of the nation - transnational, post-national, proto-national, and neo-national movements – have unearthed a new series of problematics and focused scholarly attention on traveling discourses, national imaginaries, and less formal processes of socialization, bonding, and subjectification. New Curriculum History challenges prior occlusions in the field, building upon and departing from previous waves of scholarship, extending the focus beyond the insularity of public schooling, the traditional framework of the self-contained nation-state, and the psychology of the schooled individual. Drawing on global studies, historical sociology, postcolonial studies, critical race theory, visual culture theory, disability studies, psychoanalytics, Cambridge school structuralisms, poststructuralisms, and infra- and transnational approaches the volume holds together not despite but because of differences and incommensurabilities in rereading historical records. Audience: Scholars and students in curriculum studies, history, education, philosophy, and cultural studies will be interested in these chapters for their methodological range, their innovations and their deterritorializations."--publisher website

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A general mathematical model for forced air precooling of spherical food products in bulk is developed. The food products are arranged inline to form a rectangular parallelepiped. Chilled air is blown along the height of the package. The governing equations for the transient two-dimensional conduction with internal heat generation in the product, simultaneous heat and mass transfer at the product-air interface and one-dimensional transient energy and species conservation equations for the moist air are solved numerically using finite difference methods. Results are presented in the form of time-temperature histories. Experiments are conducted with model foods in a laboratory scale air precooling tunnel. The agreement between the theoretical and experimental results is found to be good. In general, a single product analysis fails to predict the precooling characteristics of bulk loads of food products. In the range of values investigated, the respiration heat is found to have a negligible effect.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of a one-dimensional field (1) on the self-absorption characteristics and (2) when we have a finite numerical aperture for the objective lens that focuses the laser beam on the solid are considered here. Self-absorption, in particular its manifestation as an inner filter for the emitted signal, has been observed in luminescence experiments. Models for this effect exist and have been analyzed, but only in the absence of space charge. Using our previous results on minority carrier relaxation in the presence of a field, we obtain expressions incorporating inner filter effects. Focusing of a light beam on the sample, by an objective lens, results in a three-dimensional source and consequently a three-dimensional continuity equation to be solved for the minority carrier concentration. Assuming a one-dimensional electric field and employing Fourier-Bessel transforms, we recast the problem of carrier relaxation and solve the same via an identity that relates it to solutions obtained in the absence of focusing effects. The inner filter effect as well as focusing introduces new time scales in the problem of carrier relaxation. The interplay between the electric field and the parameters which characterize these effects and the consequent modulation of the intensity and time scales of carrier decay signals are analyzed and discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple and practical technique for the discrete representation of reinforcement in two-dimensional boundary element analysis of reinforced concrete structural elements is presented. The bond developed over the surface of contact between the reinforcing steel and concrete is represented using fictitious one-dimensional spring elements. Potentials of the model developed are demonstrated using a number of numerical examples. The results are seen to be in good agreement with the results obtained using standard finite element software.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polymerized carbon nanotubes (CNTs) are promising materials for polymer-based electronics and electro-mechanical sensors. The advantage of having a polymer nanolayer on CNTs widens the scope for functionalizing it in various ways for polymer electronic devices. However, in this paper, we show for the first time experimentally that, due to a resistive polymer layer having carbon nanoparticle inclusions and polymerized carbon nanotubes, an interesting dynamics can be exploited. We first show analytically that the relative change in the resistance of a single isolated semiconductive nanotube is directly proportional to the axial and torsional dynamic strains, when the strains are small, whereas, in polymerized CNTs, the viscoelasticity of the polymer and its effective electrical polarization give rise to nonlinear effects as a function of frequency and bias voltage. A simplified formula is derived to account for these effects and validated in the light of experimental results. CNT–polymer-based channels have been fabricated on a PZT substrate. Strain sensing performance of such a one-dimensional channel structure is reported. For a single frequency modulated sine pulse as input, which is common in elastic and acoustic wave-based diagnostics, imaging, microwave devices, energy harvesting, etc, the performance of the fabricated channel has been found to be promising.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper an attempt has been made to evaluate the spatial variability of the depth of weathered and engineering bedrock in Bangalore, south India using Multichannel Analysis of Surface Wave (MASW) survey. One-dimensional MASW survey has been carried out at 58 locations and shear-wave velocities are measured. Using velocity profiles, the depth of weathered rock and engineering rock surface levels has been determined. Based on the literature, shear-wave velocity of 330 ± 30 m/s for weathered rock or soft rock and 760 ± 60 m/s for engineering rock or hard rock has been considered. Depths corresponding to these velocity ranges are evaluated with respect to ground contour levels and top surface levels have been mapped with an interpolation technique using natural neighborhood. The depth of weathered rock varies from 1 m to about 21 m. In 58 testing locations, only 42 locations reached the depths which have a shear-wave velocity of more than 760 ± 60 m/s. The depth of engineering rock is evaluated from these data and it varies from 1 m to about 50 m. Further, these rock depths have been compared with a subsurface profile obtained from a two-dimensional (2-D) MASW survey at 20 locations and a few selected available bore logs from the deep geotechnical boreholes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The details of development of the stiffness matrix for a doubly curved quadrilateral element suited for static and dynamic analysis of laminated anisotropic thin shells of revolution are reported. Expressing the assumed displacement state over the middle surface of the shell as products of one-dimensional first order Hermite polynomials, it is possible to ensure that the displacement state for the assembled set of such elements, is geometrically admissible. Monotonic convergence of total potential energy is therefore possible as the modelling is successively refined. Systematic evaluation of performance of the element is conducted, considering various examples for which analytical or other solutions are available.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Instability of thin-walled open-section laminated composite beams is studied using the finite element method. A two-noded, 8 df per node thin-walled open-section laminated composite beam finite element has been used. The displacements of the element reference axis are expressed in terms of one-dimensional first order Hermite interpolation polynomials, and line member assumptions are invoked in formulation of the elastic stiffness matrix and geometric stiffness matrix. The nonlinear expressions for the strains occurring in thin-walled open-section beams, when subjected to axial, flexural and torsional loads, are incorporated in a general instability analysis. Several problems for which continuum solutions (exact/approximate) are possible have been solved in order to evaluate the performance of finite element. Next its applicability is demonstrated by predicting the buckling loads for the following problems of laminated composites: (i) two layer (45°/−45°) composite Z section cantilever beam and (ii) three layer (0°/45°/0°) composite Z section cantilever beam.