986 resultados para Nonlinear Prediction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A spectral method that obtains the soliton and periodic solutions to the nonlinear wave equation is presented. The results show that the nonlinear group velocity is a function of the frequency shift as well as of the soliton power. When the frequency shift is a function of time, a solution in terms of the Jacobian elliptic function is obtained. This solution is periodic in nature, and, to generate such an optical pulse train, one must simultaneously amplitude- and frequency-modulate the optical carrier. Finally, we extend the method to include the effect of self-steepening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various aspects of coherent states of nonlinear su(2) and su(1,1) algebras are studied. It is shown that the nonlinear su(1,1) Barut-Girardello and Perelomov coherent states are related by a Laplace transform. We then concentrate on the derivation and analysis of the statistical and geometrical properties of these states. The Berry's phase for the nonlinear coherent states is also derived. (C) 2010 American Institute of Physics. doi:10.1063/1.3514118]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High performance video standards use prediction techniques to achieve high picture quality at low bit rates. The type of prediction decides the bit rates and the image quality. Intra Prediction achieves high video quality with significant reduction in bit rate. This paper present an area optimized architecture for Intra prediction, for H.264 decoding at HDTV resolution with a target of achieving 60 fps. The architecture was validated on Virtex-5 FPGA based platform. The architecture achieves a frame rate of 64 fps. The architecture is based on multi-level memory hierarchy to reduce latency and ensure optimum resources utilization. It removes redundancy by reusing same functional blocks across different modes. The proposed architecture uses only 13% of the total LUTs available on the Xilinx FPGA XC5VLX50T.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under the project `Seasonal Prediction of the Indian Monsoon' (SPIM), the prediction of Indian summer monsoon rainfall by five atmospheric general circulation models (AGCMs) during 1985-2004 was assessed. The project was a collaborative effort of the coordinators and scientists from the different modelling groups across the country. All the runs were made at the Centre for Development of Advanced Computing (CDAC) at Bangalore on the PARAM Padma supercomputing system. Two sets of simulations were made for this purpose. In the first set, the AGCMs were forced by the observed sea surface temperature (SST) for May-September during 1985-2004. In the second set, runs were made for 1987, 1988, 1994, 1997 and 2002 forced by SST which was obtained by assuming that the April anomalies persist during May-September. The results of the first set of runs show, as expected from earlier studies, that none of the models were able to simulate the correct sign of the anomaly of the Indian summer monsoon rainfall for all the years. However, among the five models, one simulated the correct sign in the largest number of years and the second model showed maximum skill in the simulation of the extremes (i.e. droughts or excess rainfall years). The first set of runs showed some common bias which could arise either from an excessive sensitivity of the models to El Nino Southern Oscillation (ENSO) or an inability of the models to simulate the link of the Indian monsoon rainfall to Equatorial Indian Ocean Oscillation (EQUINOO), or both. Analysis of the second set of runs showed that with a weaker ENSO forcing, some models could simulate the link with EQUINOO, suggesting that the errors in the monsoon simulations with observed SST by these models could be attributed to unrealistically high sensitivity to ENSO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A state-of-the-art model of the coupled ocean-atmosphere system, the climate forecast system (CFS), from the National Centres for Environmental Prediction (NCEP), USA, has been ported onto the PARAM Padma parallel computing system at the Centre for Development of Advanced Computing (CDAC), Bangalore and retrospective predictions for the summer monsoon (June-September) season of 2009 have been generated, using five initial conditions for the atmosphere and one initial condition for the ocean for May 2009. Whereas a large deficit in the Indian summer monsoon rainfall (ISMR; June-September) was experienced over the Indian region (with the all-India rainfall deficit by 22% of the average), the ensemble average prediction was for above-average rainfall during the summer monsoon. The retrospective predictions of ISMR with CFS from NCEP for 1981-2008 have been analysed. The retrospective predictions from NCEP for the summer monsoon of 1994 and that from CDAC for 2009 have been compared with the simulations for each of the seasons with the stand-alone atmospheric component of the model, the global forecast system (GFS), and observations. It has been shown that the simulation with GFS for 2009 showed deficit rainfall as observed. The large error in the prediction for the monsoon of 2009 can be attributed to a positive Indian Ocean Dipole event seen in the prediction from July onwards, which was not present in the observations. This suggests that the error could be reduced with improvement of the ocean model over the equatorial Indian Ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A performance prediction model generally applicable for volute-type centrifugal pumps has been extended to predict the dynamic characteristics of a pump during its normal starting and stopping periods. Experiments have been conducted on a volute pump with different valve openings to study the dynamic behaviour of the pump during normal start-up and stopping, when a small length of discharge pipeline is connected to the discharge flange of the pump. Such experiments have also been conducted when the test pump was part of a hydraulic system, an experimental rig, where it is pumping against three similar pumps, known as supply pumps, connected in series, with the supply pumps kept idle or running. Instantaneous rotational speed, flowrate, and delivery and suction pressures of the pump were recorded and it was observed in all the tested cases that the change of pump behaviour during the transient period was quasi-steady, which validates the quasi-steady approach presented in this paper. The nature of variation of parameters during the transients has been discussed. The model-predicted dynamic head-capacity curves agree well with the experimental data for almost all the tested cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The EEG time series has been subjected to various formalisms of analysis to extract meaningful information regarding the underlying neural events. In this paper the linear prediction (LP) method has been used for analysis and presentation of spectral array data for the better visualisation of background EEG activity. It has also been used for signal generation, efficient data storage and transmission of EEG. The LP method is compared with the standard Fourier method of compressed spectral array (CSA) of the multichannel EEG data. The autocorrelation autoregressive (AR) technique is used for obtaining the LP coefficients with a model order of 15. While the Fourier method reduces the data only by half, the LP method just requires the storage of signal variance and LP coefficients. The signal generated using white Gaussian noise as the input to the LP filter has a high correlation coefficient of 0.97 with that of original signal, thus making LP as a useful tool for storage and transmission of EEG. The biological significance of Fourier method and the LP method in respect to the microstructure of neuronal events in the generation of EEG is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The advent of high intensity lasers coupled with the recent advances in crystal technology has led to rapid progress in the field of nonlinear optics. This article traces the history of materials development that has taken place over the past forty odd years and dwells on the current status in this important area. The materials aspect is discussed under three classes viz. inorganic, organic and semiorganic crystals. In the end, some of the crystal growth work that has been carried out in author's laboratory is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flow due to a finite disk rotating in an incompressible viscous fluid has been studied. A modified Newton-gradient finite difference scheme is used to obtain the solution of full Navier-Stokes equations numerically for different disk and cylinder sizes for a wide range of Reynolds numbers. The introduction of the aspect ratio and the disk-shroud gap, significantly alters the flow characteristics in the region under consideration, The frictional torque calculated from the flow data reveals that the contribution due to nonlinear terms is not negligible even at a low Reynolds number. For large Reynolds numbers, the flow structure reveals a strong boundary layer character.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We highlight our recent experimental work on an efficient molecular nonlinear optical crystal, 3-methoxy 4-hydroxy benzaldehyde (MHBA). Optical quality single crystals of MHBA were grown from mixtures of solvents and from melt. The overall absorption and transparency window were improved by growing them in a mixture of chloroform and acetone. The grown crystals were characterized for their optical transmission, mechanical hardness and laser damage. We have observed a strong correlation between mechanical properties and laser induced damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Even though dynamic programming offers an optimal control solution in a state feedback form, the method is overwhelmed by computational and storage requirements. Approximate dynamic programming implemented with an Adaptive Critic (AC) neural network structure has evolved as a powerful alternative technique that obviates the need for excessive computations and storage requirements in solving optimal control problems. In this paper, an improvement to the AC architecture, called the �Single Network Adaptive Critic (SNAC)� is presented. This approach is applicable to a wide class of nonlinear systems where the optimal control (stationary) equation can be explicitly expressed in terms of the state and costate variables. The selection of this terminology is guided by the fact that it eliminates the use of one neural network (namely the action network) that is part of a typical dual network AC setup. As a consequence, the SNAC architecture offers three potential advantages: a simpler architecture, lesser computational load and elimination of the approximation error associated with the eliminated network. In order to demonstrate these benefits and the control synthesis technique using SNAC, two problems have been solved with the AC and SNAC approaches and their computational performances are compared. One of these problems is a real-life Micro-Electro-Mechanical-system (MEMS) problem, which demonstrates that the SNAC technique is applicable to complex engineering systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many physical problems can be modeled by scalar, first-order, nonlinear, hyperbolic, partial differential equations (PDEs). The solutions to these PDEs often contain shock and rarefaction waves, where the solution becomes discontinuous or has a discontinuous derivative. One can encounter difficulties using traditional finite difference methods to solve these equations. In this paper, we introduce a numerical method for solving first-order scalar wave equations. The method involves solving ordinary differential equations (ODEs) to advance the solution along the characteristics and to propagate the characteristics in time. Shocks are created when characteristics cross, and the shocks are then propagated by applying analytical jump conditions. New characteristics are inserted in spreading rarefaction fans. New characteristics are also inserted when values on adjacent characteristics lie on opposite sides of an inflection point of a nonconvex flux function, Solutions along characteristics are propagated using a standard fourth-order Runge-Kutta ODE solver. Shocks waves are kept perfectly sharp. In addition, shock locations and velocities are determined without analyzing smeared profiles or taking numerical derivatives. In order to test the numerical method, we study analytically a particular class of nonlinear hyperbolic PDEs, deriving closed form solutions for certain special initial data. We also find bounded, smooth, self-similar solutions using group theoretic methods. The numerical method is validated against these analytical results. In addition, we compare the errors in our method with those using the Lax-Wendroff method for both convex and nonconvex flux functions. Finally, we apply the method to solve a PDE with a convex flux function describing the development of a thin liquid film on a horizontally rotating disk and a PDE with a nonconvex flux function, arising in a problem concerning flow in an underground reservoir.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of long-range prediction of rainfall pattern for devising and planning agricultural strategies cannot be overemphasized. However, the prediction of rainfall pattern remains a difficult problem and the desired level of accuracy has not been reached. The conventional methods for prediction of rainfall use either dynamical or statistical modelling. In this article we report the results of a new modelling technique using artificial neural networks. Artificial neural networks are especially useful where the dynamical processes and their interrelations for a given phenomenon are not known with sufficient accuracy. Since conventional neural networks were found to be unsuitable for simulating and predicting rainfall patterns, a generalized structure of a neural network was then explored and found to provide consistent prediction (hindcast) of all-India annual mean rainfall with good accuracy. Performance and consistency of this network are evaluated and compared with those of other (conventional) neural networks. It is shown that the generalized network can make consistently good prediction of annual mean rainfall. Immediate application and potential of such a prediction system are discussed.