963 resultados para Non-commutative particles dynamics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 1970s are in the limelight of a growing historiographic attention, partly due to the recent opening of new archival resources. 1973, in particular, has a special interest in the historian’s eyes, as many are the events that happened that year: to name but a few, the Chilean coup, the October War, the ensuing oil crisis, the Vietnamese peace treaty. So it is may be not entirely surprising that not much attention has been paid to the Year of Europe, a nebulous American initiative destined to sum up to nothing practical - as Kissinger himself put it, it was destined to be the Year that never Was.1 It is my opinion, however, that its failure should not conceal its historical interest. Even though transatlantic relations have sometimes been seen as an uninterrupted history of crisis,2 in 1973 they reached what could then be considered as their unprecedented nadir. I believe that a thorough analysis of the events that during that year found the US increasingly at odds with the countries of Western Europe is worth carrying out not only to cast a new light on the dynamics of transatlantic relations but also to deepen our comprehension of the internal dynamics of the actors involved, mainly the Nixon administration and a unifying Europe. The Nixon administration had not carefully planned what the initiative actually should have amounted to, and its official announcement appears to have been one of Kissinger’s coups de theatre. Yet the Year of Europe responded to the vital priority of revitalising the relations with Western Europe, crucial ally, for too long neglected. But 1973 did not end with the solemn renewal of the Atlantic Declaration that Kissinger had sought. On the contrary, it saw, for the first time, the countries of the newly enlarged EC engaged in a real, if short-lived, solidarity on foreign policy, which highlighted the Nixon administration’s contradictions regarding European integration. Those, in addition to the numerous tensions that already strained transatlantic relations, gave birth to a downward spiral of incomprehensions and misperceptions, which the unexpected deflagration of the October war seriously worsened. However, even though the tensions did not disappear, the European front soon started to disintegrate, mainly under the strains imposed by the oil crisis. Significant changes in the leadership of the main European countries helped to get the tones back to normal. During the course of 1974-5, the substantial failure of the Euro-Arab dialogue, the Gymlich compromise, frequent and serene bilateral meetings bear witness that the worst was over.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Il presente lavoro di tesi si occupa di valutare, attraverso misure finanziarie, i benefici derivanti da un grosso investimento IT dell'azienda Hera. L'azienda ha deciso di investire in ERP basato su SAP per poter creare un nuovo sistema informativo integrato. Ma per calcolare dei reali benefici bisogna tener conto anche di variabili che mutano nel tempo. Per fare ciò, si è deciso di utilizzare due diversi approcci (System Dynamics e Balanced Scorecard) per arrivare alla creazione di un modello simulabile. Dopodiché è stato possibile analizzare i dati attraverso i grafici risultanti e concludere mostrando dei casi. Questi ultimi illustrano cosa succede nel caso in cui tutto sia in condizioni normali, oppure se il lavoro raddoppia, oppure non si concluda mai.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aerosol particles and water vapour are two important constituents of the atmosphere. Their interaction, i.e. thecondensation of water vapour on particles, brings about the formation of cloud, fog, and raindrops, causing the water cycle on the earth, and being responsible for climate changes. Understanding the roles of water vapour and aerosol particles in this interaction has become an essential part of understanding the atmosphere. In this work, the heterogeneous nucleation on pre-existing aerosol particles by the condensation of water vapour in theflow of a capillary nozzle was investigated. Theoretical and numerical modelling as well as experiments on thiscondensation process were included. Based on reasonable results from the theoretical and numerical modelling, an idea of designing a new nozzle condensation nucleus counter (Nozzle-CNC), that is to utilise the capillary nozzle to create an expanding water saturated air flow, was then put forward and various experiments were carried out with this Nozzle-CNC under different experimental conditions. Firstly, the air stream in the long capillary nozzle with inner diameter of 1.0~mm was modelled as a steady, compressible and heat-conducting turbulence flow by CFX-FLOW3D computational program. An adiabatic and isentropic cooling in the nozzle was found. A supersaturation in the nozzle can be created if the inlet flow is water saturated, and its value depends principally on flow velocity or flow rate through the nozzle. Secondly, a particle condensational growth model in air stream was developed. An extended Mason's diffusion growthequation with size correction for particles beyond the continuum regime and with the correction for a certain particle Reynolds number in an accelerating state was given. The modelling results show the rapid condensational growth of aerosol particles, especially for fine size particles, in the nozzle stream, which, on the one hand, may induce evident `over-sizing' and `over-numbering' effects in aerosol measurements as nozzle designs are widely employed for producing accelerating and focused aerosol beams in aerosol instruments like optical particle counter (OPC) and aerodynamical particle sizer (APS). It can, on the other hand, be applied in constructing the Nozzle-CNC. Thirdly, based on the optimisation of theoretical and numerical results, the new Nozzle-CNC was built. Under various experimental conditions such as flow rate, ambient temperature, and the fraction of aerosol in the total flow, experiments with this instrument were carried out. An interesting exponential relation between the saturation in the nozzle and the number concentration of atmospheric nuclei, including hygroscopic nuclei (HN), cloud condensation nuclei (CCN), and traditionally measured atmospheric condensation nuclei (CN), was found. This relation differs from the relation for the number concentration of CCN obtained by other researchers. The minimum detectable size of this Nozzle-CNC is 0.04?m. Although further improvements are still needed, this Nozzle-CNC, in comparison with other CNCs, has severaladvantages such as no condensation delay as particles larger than the critical size grow simultaneously, low diffusion losses of particles, little water condensation at the inner wall of the instrument, and adjustable saturation --- therefore the wide counting region, as well as no calibration compared to non-water condensation substances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulationen von SiO2 mit dem von van Beest, Kramer und vanSanten (BKS) entwickelten Paarpotenzial erzeugen vielezufriedenstellende Ergebnisse, aber auch charakteristischeSchwachstellen. In dieser Arbeit wird das BKS-Potenzial mitzwei kürzlich vorgeschlagenen Potenzialen verglichen, dieeffektiv Mehrteilchen-Wechselwirkungen beinhalten. Der ersteAnsatz erlaubt dazu fluktuierende Ladungen, der zweiteinduzierbare Polarisierungen auf den Sauerstoffatomen. Die untersuchten Schwachstellen des BKS Potenzialsbeinhalten das Verhältnis der zwei Gitterkonstanten a und cim Quarzübergang, das von BKS falsch beschrieben wird.Cristobalit und Tridymit erscheinen instabil mit BKS.Weiterhin zeigt die BKS-Zustandsdichte charakteristischeAbweichungen von der wahren Zustandsdichte. DerÜbergangsdruck für den Stishovit I-II Übergang wird deutlichüberschätzt. Das Fluktuierende-Ladungs-Modell verbesserteinige der genannten Punkte, reproduziert aber viele andereEigenschaften schlechter als BKS. DasFluktierende-Dipol-Modell dagegen behebt alle genanntenArtefakte. Zusätzlich wird der druckinduzierte Phasenübergang imalpha-Quarz untersucht. Alle Potentiale finden die selbeStruktur für Quarz II. Bei anschliessender Dekompressionerzeugt BKS eine weitere Phase, während die beiden anderenPotentiale wieder zum alpha-Quarz zurückkehren. Weiterhinwerden zwei Methoden entwickelt, um die piezoelektrischenKonstanten bei konstantem Druck zu bestimmen. Die Ergebnissegeben Hinweise auf eine möglicherweisenicht-elektrostatische Natur der Polarisierungen imFluktuierende-Dipole-Modell. Mit dieser Interpretation scheint das Fluktuierende-DipolPotential alle verfügbaren experimentellen Daten am bestenvon allen drei untersuchten Ansätzen zu reproduzieren.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The subject of this thesis are the interactions between nucleosome core particles (NCPs). NCPs are the primary storage units of DNA in eucaryotic cells. Each NCP consists of a core of eight histone proteins and a strand of DNA, which is wrapped around about two times. Each histone protein has a terminal tail passing over and between the superhelix of the wrapped DNA. Special emphasis was placed on the role of the histone tails, since experimental ndings suggest that the tails have a great in uence on the mutual attraction of the NCPs. In those experiments Mangenot et al. observe a dramatic change in the con guration of the tails, which is accompanied by evidence of mutual attraction between NCPs, when a certain salt concentration is reached. Existing models used in the theoretical approaches and in simulations focus on the description of the histone core and the wrapped DNA, but neglect the histone tails. We introduce the multi chain complex as a new simulation model. Here the histone core and the wrapping DNA are modelled via a charged sphere, while the histone tails are represented by oppositely charged chains grafted on the sphere surface. We start by investigating the parameter space describing a single NCP. The Debye-Huckel potential is used to model the electrostatic interactions and to determine the e ective charge of the NCP core. This value is subsequently used for a study of the pairinteraction of two NCPs via an extensive Molecular Dynamics study. The monomer distribution of the full chain model is investigated. The existence of tail bridges between the cores is demonstrated. Finally, by discriminating between bridging and non-bridging con gurations, we can show that the effect of tail bridging between the spheres does indeed account for the observed attraction. The full chain model can serve as a model to study the acetylation of the histone tails of the nucleosome. The reduction of the charge fraction of the tails, that corresponds to the process of acetylation, leads to a reduction or even the disappearance of the attraction. A recent MC study links this e ect to the unfolding of the chromatin ber in the case of acetylated histone tails. In this case the acetylation of the histone tails leads to the formation of heterochromatin, and one could understand how larger regions of the genetic information could be inactivated through this mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sample scanning confocal optical microscope (SCOM) was designed and constructed in order to perform local measurements of fluorescence, light scattering and Raman scattering. This instrument allows to measure time resolved fluorescence, Raman scattering and light scattering from the same diffraction limited spot. Fluorescence from single molecules and light scattering from metallic nanoparticles can be studied. First, the electric field distribution in the focus of the SCOM was modelled. This enables the design of illumination modes for different purposes, such as the determination of the three-dimensional orientation of single chromophores. Second, a method for the calculation of the de-excitation rates of a chromophore was presented. This permits to compare different detection schemes and experimental geometries in order to optimize the collection of fluorescence photons. Both methods were combined to calculate the SCOM fluorescence signal of a chromophore in a general layered system. The fluorescence excitation and emission of single molecules through a thin gold film was investigated experimentally and modelled. It was demonstrated that, due to the mediation of surface plasmons, single molecule fluorescence near a thin gold film can be excited and detected with an epi-illumination scheme through the film. Single molecule fluorescence as close as 15nm to the gold film was studied in this manner. The fluorescence dynamics (fluorescence blinking and excited state lifetime) of single molecules was studied in the presence and in the absence of a nearby gold film in order to investigate the influence of the metal on the electronic transition rates. The trace-histogram and the autocorrelation methods for the analysis of single molecule fluorescence blinking were presented and compared via the analysis of Monte-Carlo simulated data. The nearby gold influences the total decay rate in agreement to theory. The gold presence produced no influence on the ISC rate from the excited state to the triplet but increased by a factor of 2 the transition rate from the triplet to the singlet ground state. The photoluminescence blinking of Zn0.42Cd0.58Se QDs on glass and ITO substrates was investigated experimentally as a function of the excitation power (P) and modelled via Monte-Carlo simulations. At low P, it was observed that the probability of a certain on- or off-time follows a negative power-law with exponent near to 1.6. As P increased, the on-time fraction reduced on both substrates whereas the off-times did not change. A weak residual memory effect between consecutive on-times and consecutive off-times was observed but not between an on-time and the adjacent off-time. All of this suggests the presence of two independent mechanisms governing the lifetimes of the on- and off-states. The simulated data showed Poisson-distributed off- and on-intensities, demonstrating that the observed non-Poissonian on-intensity distribution of the QDs is not a product of the underlying power-law probability and that the blinking of QDs occurs between a non-emitting off-state and a distribution of emitting on-states with different intensities. All the experimentally observed photo-induced effects could be accounted for by introducing a characteristic lifetime tPI of the on-state in the simulations. The QDs on glass presented a tPI proportional to P-1 suggesting the presence of a one-photon process. Light scattering images and spectra of colloidal and C-shaped gold nano-particles were acquired. The minimum size of a metallic scatterer detectable with the SCOM lies around 20 nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In dieser Arbeit wurde die Elektronenemission von Nanopartikeln auf Oberflächen mittels spektroskopischen Photoelektronenmikroskopie untersucht. Speziell wurden metallische Nanocluster untersucht, als selbstorganisierte Ensembles auf Silizium oder Glassubstraten, sowie ferner ein Metall-Chalcogenid (MoS2) Nanoröhren-Prototyp auf Silizium. Der Hauptteil der Untersuchungen war auf die Wechselwirkung von fs-Laserstrahlung mit den Nanopartikeln konzentriert. Die Energie der Lichtquanten war kleiner als die Austrittsarbeit der untersuchten Proben, so dass Ein-Photonen-Photoemission ausgeschlossen werden konnte. Unsere Untersuchungen zeigten, dass ausgehend von einem kontinuierlichen Metallfilm bis hin zu Clusterfilmen ein anderer Emissionsmechanismus konkurrierend zur Multiphotonen-Photoemission auftritt und für kleine Cluster zu dominieren beginnt. Die Natur dieses neuen Mechanismus` wurde durch verschiedenartige Experimente untersucht. Der Übergang von einem kontinuierlichen zu einem Nanopartikelfilm ist begleitet von einer Zunahme des Emissionsstroms von mehr als eine Größenordnung. Die Photoemissions-Intensität wächst mit abnehmender zeitlicher Breite des Laserpulses, aber diese Abhängigkeit wird weniger steil mit sinkender Partikelgröße. Die experimentellen Resultate wurden durch verschiedene Elektronenemissions-Mechanismen erklärt, z.B. Multiphotonen-Photoemission (nPPE), thermionische Emission und thermisch unterstützte nPPE sowie optische Feldemission. Der erste Mechanismus überwiegt für kontinuierliche Filme und Partikel mit Größen oberhalb von mehreren zehn Nanometern, der zweite und dritte für Filme von Nanopartikeln von einer Größe von wenigen Nanometern. Die mikrospektroskopischen Messungen bestätigten den 2PPE-Emissionsmechanismus von dünnen Silberfilmen bei „blauer“ Laseranregung (hν=375-425nm). Das Einsetzen des Ferminiveaus ist relativ scharf und verschiebt sich um 2hν, wenn die Quantenenergie erhöht wird, wogegen es bei „roter“ Laseranregung (hν=750-850nm) deutlich verbreitert ist. Es zeigte sich, dass mit zunehmender Laserleistung die Ausbeute von niederenergetischen Elektronen schwächer zunimmt als die Ausbeute von höherenergetischen Elektronen nahe der Fermikante in einem Spektrum. Das ist ein klarer Hinweis auf eine Koexistenz verschiedener Emissionsmechanismen in einem Spektrum. Um die Größenabhängigkeit des Emissionsverhaltens theoretisch zu verstehen, wurde ein statistischer Zugang zur Lichtabsorption kleiner Metallpartikel abgeleitet und diskutiert. Die Elektronenemissionseigenschaften bei Laseranregung wurden in zusätzlichen Untersuchungen mit einer anderen Anregungsart verglichen, der Passage eines Tunnelstroms durch einen Metall-Clusterfilm nahe der Perkolationsschwelle. Die elektrischen und Emissionseigenschaften von stromtragenden Silberclusterfilmen, welche in einer schmalen Lücke (5-25 µm Breite) zwischen Silberkontakten auf einem Isolator hergestellt wurden, wurden zum ersten Mal mit einem Emissions-Elektronenmikroskop (EEM) untersucht. Die Elektronenemission beginnt im nicht-Ohmschen Bereich der Leitungsstrom-Spannungskurve des Clusterfilms. Wir untersuchten das Verhalten eines einzigen Emissionszentrums im EEM. Es zeigte sich, dass die Emissionszentren in einem stromleitenden Silberclusterfilm Punktquellen für Elektronen sind, welche hohe Emissions-Stromdichten (mehr als 100 A/cm2) tragen können. Die Breite der Energieverteilung der Elektronen von einem einzelnen Emissionszentrum wurde auf etwa 0.5-0.6 eV abgeschätzt. Als Emissionsmechanismus wird die thermionische Emission von dem „steady-state“ heißen Elektronengas in stromdurchflossenen metallischen Partikeln vorgeschlagen. Größenselektierte, einzelne auf Si-Substraten deponierte MoS2-Nanoröhren wurden mit einer Flugzeit-basierten Zweiphotonen-Photoemissions-Spektromikroskopie untersucht. Die Nanoröhren-Spektren wiesen bei fs-Laser Anregung eine erstaunlich hohe Emissionsintensität auf, deutlich höher als die SiOx Substratoberfläche. Dagegen waren die Röhren unsichtbar bei VUV-Anregung bei hν=21.2 eV. Eine ab-initio-Rechnung für einen MoS2-Slab erklärt die hohe Intensität durch eine hohe Dichte freier intermediärer Zustände beim Zweiphotonen-Übergang bei hν=3.1 eV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis reports on the experimental investigation of controlled spin dependent interactions in a sample of ultracold Rubidium atoms trapped in a periodic optical potential. In such a situation, the most basic interaction between only two atoms at one common potential well, forming a micro laboratory for this atom pair, can be investigated. Spin dependent interactions between the atoms can lead to an intriguing time evolution of the system. In this work, we present two examples of such spin interaction induced dynamics. First, we have been able to observe and control a coherent spin changing interaction. Second, we have achieved to examine and manipulate an interaction induced time evolution of the relative phase of a spin 1/2-system, both in the case of particle pairs and in the more general case of N interacting particles. The first part of this thesis elucidates the spin-changing interaction mechanism underlying many fascinating effects resulting from interacting spins at ultracold temperatures. This process changes the spin states of two colliding particles, while preserving total magnetization. If initial and final states have almost equal energy, this process is resonant and leads to large amplitude oscillations between different spin states. The measured coupling parameters of such a process allow to precisely infer atomic scattering length differences, that e.g. determine the nature of the magnetic ground state of the hyperfine states in Rubidium. Moreover, a method to tune the spin oscillations at will based on the AC-Zeeman effect has been implemented. This allowed us to use resonant spin changing collisions as a quantitative and non-destructive particle pair probe in the optical lattice. This led to a series of experiments shedding light on the Bosonic superfluid to Mott insulator transition. In a second series of experiments we have been able to coherently manipulate the interaction induced time evolution of the relative phase in an ensemble of spin 1/2-systems. For two particles, interactions can lead to an entanglement oscillation of the particle pair. For the general case of N interacting particles, the ideal time evolution leads to the creation of spin squeezed states and even Schrödinger cat states. In the experiment we have been able to control the underlying interactions by a Feshbach resonance. For particle pairs we could directly observe the entanglement oscillations. For the many particle case we have been able to observe and reverse the interaction induced dispersion of the relative phase. The presented results demonstrate how correlated spin states can be engineered through control of atomic interactions. Moreover, the results point towards the possibility to simulate quantum magnetism phenomena with ultracold atoms in optical traps, and to realize and analyze many novel quantum spin states which have not been experimentally realized so far.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer simulations have become an important tool in physics. Especially systems in the solid state have been investigated extensively with the help of modern computational methods. This thesis focuses on the simulation of hydrogen-bonded systems, using quantum chemical methods combined with molecular dynamics (MD) simulations. MD simulations are carried out for investigating the energetics and structure of a system under conditions that include physical parameters such as temperature and pressure. Ab initio quantum chemical methods have proven to be capable of predicting spectroscopic quantities. The combination of these two features still represents a methodological challenge. Furthermore, conventional MD simulations consider the nuclei as classical particles. Not only motional effects, but also the quantum nature of the nuclei are expected to influence the properties of a molecular system. This work aims at a more realistic description of properties that are accessible via NMR experiments. With the help of the path integral formalism the quantum nature of the nuclei has been incorporated and its influence on the NMR parameters explored. The effect on both the NMR chemical shift and the Nuclear Quadrupole Coupling Constants (NQCC) is presented for intra- and intermolecular hydrogen bonds. The second part of this thesis presents the computation of electric field gradients within the Gaussian and Augmented Plane Waves (GAPW) framework, that allows for all-electron calculations in periodic systems. This recent development improves the accuracy of many calculations compared to the pseudopotential approximation, which treats the core electrons as part of an effective potential. In combination with MD simulations of water, the NMR longitudinal relaxation times for 17O and 2H have been obtained. The results show a considerable agreement with the experiment. Finally, an implementation of the calculation of the stress tensor into the quantum chemical program suite CP2K is presented. This enables MD simulations under constant pressure conditions, which is demonstrated with a series of liquid water simulations, that sheds light on the influence of the exchange-correlation functional used on the density of the simulated liquid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myocardial perfusion quantification by means of Contrast-Enhanced Cardiac Magnetic Resonance images relies on time consuming frame-by-frame manual tracing of regions of interest. In this Thesis, a novel automated technique for myocardial segmentation and non-rigid registration as a basis for perfusion quantification is presented. The proposed technique is based on three steps: reference frame selection, myocardial segmentation and non-rigid registration. In the first step, the reference frame in which both endo- and epicardial segmentation will be performed is chosen. Endocardial segmentation is achieved by means of a statistical region-based level-set technique followed by a curvature-based regularization motion. Epicardial segmentation is achieved by means of an edge-based level-set technique followed again by a regularization motion. To take into account the changes in position, size and shape of myocardium throughout the sequence due to out of plane respiratory motion, a non-rigid registration algorithm is required. The proposed non-rigid registration scheme consists in a novel multiscale extension of the normalized cross-correlation algorithm in combination with level-set methods. The myocardium is then divided into standard segments. Contrast enhancement curves are computed measuring the mean pixel intensity of each segment over time, and perfusion indices are extracted from each curve. The overall approach has been tested on synthetic and real datasets. For validation purposes, the sequences have been manually traced by an experienced interpreter, and contrast enhancement curves as well as perfusion indices have been computed. Comparisons between automatically extracted and manually obtained contours and enhancement curves showed high inter-technique agreement. Comparisons of perfusion indices computed using both approaches against quantitative coronary angiography and visual interpretation demonstrated that the two technique have similar diagnostic accuracy. In conclusion, the proposed technique allows fast, automated and accurate measurement of intra-myocardial contrast dynamics, and may thus address the strong clinical need for quantitative evaluation of myocardial perfusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis we will investigate some properties of one-dimensional quantum systems. From a theoretical point of view quantum models in one dimension are particularly interesting because they are strongly interacting, since particles cannot avoid each other in their motion, and you we can never ignore collisions. Yet, integrable models often generate new and non-trivial solutions, which could not be found perturbatively. In this dissertation we shall focus on two important aspects of integrable one- dimensional models: Their entanglement properties at equilibrium and their dynamical correlators after a quantum quench. The first part of the thesis will be therefore devoted to the study of the entanglement entropy in one- dimensional integrable systems, with a special focus on the XYZ spin-1/2 chain, which, in addition to being integrable, is also an interacting model. We will derive its Renyi entropies in the thermodynamic limit and its behaviour in different phases and for different values of the mass-gap will be analysed. In the second part of the thesis we will instead study the dynamics of correlators after a quantum quench , which represent a powerful tool to measure how perturbations and signals propagate through a quantum chain. The emphasis will be on the Transverse Field Ising Chain and the O(3) non-linear sigma model, which will be both studied by means of a semi-classical approach. Moreover in the last chapter we will demonstrate a general result about the dynamics of correlation functions of local observables after a quantum quench in integrable systems. In particular we will show that if there are not long-range interactions in the final Hamiltonian, then the dynamics of the model (non equal- time correlations) is described by the same statistical ensemble that describes its statical properties (equal-time correlations).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Functional materials have great importance due to their many important applications. The characterization of supramolecular architectures which are held together by non-covalent interactions is of most importance to understand their properties. Solid-state NMR methods have recently been proven to be able to unravel such structure-property relations with the help of fast magic-angle spinning and advanced pulse sequences. The aim of the current work is to understand the structure and dynamics of functional supramolecular materials which are potentially important for fuel-cell (proton conducting membrane materials) and solar-cell or plastic-electronic applications (photo-reactive aromatic materials). In particular, hydrogen-bonding networks, local proton mobility, molecular packing arrangements, and local dynamics will be studied by the use of advanced solid-state NMR methods. The first class of materials studied in this work is proton conducting polymers which also form hydrogen-bonding network. Different materials, which are prepared for high 1H conduction by different approaches are studied: PAA-P4VP, PVPA-ABPBI, Tz5Si, and Triazole-functional systems. The materials are examples of the following major groups; - Homopolymers with specific functional groups (Triazole functional polysiloxanes). - Acid-base polymer blends approach (PAA-P4VP, PVPA-ABPBI). - Acid-base copolymer approach (Triazole-PVPA). - Acid doped polymers (Triazole functional polymer doped with H3PO4). Perylenebisimide (PBI) derivatives, a second type of important functional supramolecular materials with potent applications in plastic electronics, were also investigated by means of solid-state NMR. The preparation of conducting nanoscopic fibers based on the self-assembling functional units is an appealing aim as they may be incorporated in molecular electronic devices. In this category, perylene derivatives have attracted great attention due to their high charge carrier mobility. A detailed knowledge about their supramolecular structure and molecular dynamics is crucial for the understanding of their electronic properties. The aim is to understand the structure, dynamics and packing arrangements which lead to high electron conductivity in PBI derivatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liquids under the influence of external fields exhibit a wide range of intriguing phenomena that can be markedly different from the behaviour of a quiescent system. This work considers two different systems — a glassforming Yukawa system and a colloid-polymer mixture — by Molecular Dynamics (MD) computer simulations coupled to dissipative particle dynamics. The former consists of a 50-50 binary mixture of differently-sized, like-charged colloids interacting via a screened Coulomb (Yukawa) potential. Near the glass transition the influence of an external shear field is studied. In particular, the transition from elastic response to plastic flow is of interest. At first, this model is characterised in equilibrium. Upon decreasing temperature it exhibits the typical dynamics of glassforming liquids, i.e. the structural relaxation time τα grows strongly in a rather small temperature range. This is discussed with respect to the mode-coupling theory of the glass transition (MCT). For the simulation of bulk systems under shear, Lees-Edwards boundary conditions are applied. At constant shear rates γ˙ ≫ 1/τα the relevant time scale is given by 1/γ˙ and the system shows shear thinning behaviour. In order to understand the pronounced differences between a quiescent system and a system under shear, the response to a suddenly commencing or terminating shear flow is studied. After the switch-on of the shear field the shear stress shows an overshoot, marking the transition from elastic to plastic deformation, which is connected to a super-diffusive increase of the mean squared displacement. Since the average static structure only depends on the value of the shear stress, it does not discriminate between those two regimes. The distribution of local stresses, in contrast, becomes broader as soon as the system starts flowing. After a switch-off of the shear field, these additional fluctuations are responsible for the fast decay of stresses, which occurs on a time scale 1/γ˙ . The stress decay after a switch-off in the elastic regime, on the other hand, happens on the much larger time scale of structural relaxation τα. While stresses decrease to zero after a switch-off for temperatures above the glass transition, they decay to a finite value for lower temperatures. The obtained results are important for advancing new theoretical approaches in the framework of mode-coupling theory. Furthermore, they suggest new experimental investigations on colloidal systems. The colloid-polymer mixture is studied in the context of the behaviour near the critical point of phase separation. For the MD simulations a new effective model with soft interaction potentials is introduced and its phase diagram is presented. Here, mainly the equilibrium properties of this model are characterised. While the self-diffusion constants of colloids and polymers do not change strongly when the critical point is approached, critical slowing down of interdiffusion is observed. The order parameter fluctuations can be determined through the long-wavelength limit of static structure factors. For this strongly asymmetric mixture it is shown how the relevant structure factor can be extracted by a diagonalisation of a matrix that contains the partial static structure factors. By presenting first results of this model under shear it is demonstrated that it is suitable for non-equilibrium simulations as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Il raffreddamento stratosferico associato alla riduzione dell’ozono nelle regioni polari induce un rafforzamento dei venti occidentali nella bassa stratosfera, uno spostamento verso il polo e un’intensificazione del jet troposferico delle medie latitudini. Si riscontra una proiezione di questi cambiamenti a lungo termine sulla polarità ad alto indice di un modo di variabilità climatica, il Southern Annular Mode, alla superficie, dove i venti occidentali alle medie latitudini guidano la Corrente Circumpolare Antartica influenzando la circolazione oceanica meridionale e probabilmente l’estensione del ghiaccio marino ed i flussi di carbonio aria-mare nell’Oceano Meridionale. Una limitata rappresentazione dei processi stratosferici nei modelli climatici per la simulazione del passato e la previsione dei cambiamenti climatici futuri, sembrerebbe portare ad un errore nella rappresentazione dei cambiamenti troposferici a lungo termine nelle rispettive simulazioni. In questa tesi viene condotta un’analisi multi-model mettendo insieme i dati di output derivati da diverse simulazioni di modelli climatici accoppiati oceano-atmosfera, che partecipano al progetto CMIP5, con l'obiettivo di comprendere come le diverse rappresentazioni della dinamica stratosferica possano portare ad una differente rappresentazione dei cambiamenti climatici alla superficie. Vengono utilizzati modelli “High Top” (HT), che hanno una buona rappresentazione della dinamica stratosferica, e modelli “Low Top” (LT), che invece non ne hanno. I risultati vengono confrontati con le reanalisi meteorologiche globali disponibili (ERA-40). Viene mostrato come la rappresentazione e l’intensità del raffreddamento radiativo iniziale e di quello dinamico nella bassa stratosfera, nei modelli, siano i fattori chiave che controllano la successiva risposta troposferica, e come il raffreddamento stesso dipenda dalla rappresentazione della dinamica stratosferica. Si cerca inoltre di differenziare i modelli in base alla loro rappresentazione del raffreddamento radiativo e dinamico nella bassa stratosfera e alla risposta del jet troposferico. Nei modelli, si riscontra che il trend del jet nell'intera troposfera è significativamente correlato linearmente al raffreddamento stesso della bassa stratosfera.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mit der Zielsetzung der vorliegenden Arbeit wurde die detailierten Analyse von Migrationsdynamiken epithelilaler Monolayer anhand zweier neuartiger in vitro Biosensoren verfolgt, der elektrischen Zell-Substrat Impedanz Spektroskopie (electrical cell-substrate impedance sensing, ECIS) sowie der Quarz Kristall Mikrowaage (quartz crystal microbalance, QCM). Beide Methoden erwiesen sich als sensitiv gegenüber der Zellmotilität und der Nanozytotoxizität.rnInnerhalb des ersten Projektes wurde ein Fingerprinting von Krebszellen anhand ihrer Motilitätsdynamiken und der daraus generierten elektrischen oder akkustischen Fluktuationen auf ECIS oder QCM Basis vorgenommen; diese Echtzeitsensoren wurdene mit Hilfe klassicher in vitro Boyden-Kammer Migrations- und Invasions-assays validiert. Fluktuationssignaturen, also Langzeitkorrelationen oder fraktale Selbstähnlichkeit aufgrund der kollektiven Zellbewegung, wurden über Varianz-, Fourier- sowie trendbereinigende Fluktuationsanalyse quantifiziert. Stochastische Langzeitgedächtnisphänomene erwiesen sich als maßgebliche Beiträge zur Antwort adhärenter Zellen auf den QCM und ECIS-Sensoren. Des weiteren wurde der Einfluss niedermolekularer Toxine auf die Zytoslelettdynamiken verfolgt: die Auswirkungen von Cytochalasin D, Phalloidin und Blebbistatin sowie Taxol, Nocodazol und Colchicin wurden dabei über die QCM und ECIS Fluktuationsanalyse erfasst.rnIn einem zweiten Projektschwerpunkt wurden Adhäsionsprozesse sowie Zell-Zell und Zell-Substrat Degradationsprozesse bei Nanopartikelgabe charackterisiert, um ein Maß für Nanozytotoxizität in Abhangigkeit der Form, Funktionalisierung Stabilität oder Ladung der Partikel zu erhalten.rnAls Schlussfolgerung ist zu nennen, dass die neuartigen Echtzeit-Biosensoren QCM und ECIS eine hohe Zellspezifität besitzen, auf Zytoskelettdynamiken reagieren sowie als sensitive Detektoren für die Zellvitalität fungieren können.