881 resultados para Neuronal Plasticity
Resumo:
Arousal sometimes enhances and sometimes impairs perception and memory. In our Glutamate Amplifies Noradrenergic Effects (GANE) model, glutamate at active synapses interacts with norepinephrine released by the locus coeruleus to create local ‘hot spots’ of activity that enable the selective effects of arousal. This hot spot mechanism allows local cortical regions to self-regulate norepinephrine release based on current activation levels. In turn, hot spots bias global energetic delivery and functional network connectivity to enhance processing of high priority representations and impair processing of lower priority representations.
Resumo:
Differentiated human neural stem cells were cultured in an inert three-dimensional (3D) scaffold and, unlike two-dimensional (2D) but otherwise comparable monolayer cultures, formed spontaneously active, functional neuronal networks that responded reproducibly and predictably to conventional pharmacological treatments to reveal functional, glutamatergic synapses. Immunocytochemical and electron microscopy analysis revealed a neuronal and glial population, where markers of neuronal maturity were observed in the former. Oligonucleotide microarray analysis revealed substantial differences in gene expression conferred by culturing in a 3D vs a 2D environment. Notable and numerous differences were seen in genes coding for neuronal function, the extracellular matrix and cytoskeleton. In addition to producing functional networks, differentiated human neural stem cells grown in inert scaffolds offer several significant advantages over conventional 2D monolayers. These advantages include cost savings and improved physiological relevance, which make them better suited for use in the pharmacological and toxicological assays required for development of stem cell-based treatments and the reduction of animal use in medical research.
Resumo:
Monolayers of neurons and glia have been employed for decades as tools for the study of cellular physiology and as the basis for a variety of standard toxicological assays. A variety of three dimensional (3D) culture techniques have been developed with the aim to produce cultures that recapitulate desirable features of intact. In this study, we investigated the effect of preparing primary mouse mixed neuron and glial cultures in the inert 3D scaffold, Alvetex. Using planar multielectrode arrays, we compared the spontaneous bioelectrical activity exhibited by neuroglial networks grown in the scaffold with that seen in the same cells prepared as conventional monolayer cultures. Two dimensional (monolayer; 2D) cultures exhibited a significantly higher spike firing rate than that seen in 3D cultures although no difference was seen in total signal power (<50 Hz) while pharmacological responsiveness of each culture type to antagonism of GABAAR, NMDAR and AMPAR was highly comparable. Interestingly, correlation of burst events, spike firing and total signal power (<50 Hz) revealed that local field potential events were associated with action potential driven bursts as was the case for 2D cultures. Moreover, glial morphology was more physiologically normal in 3D cultures. These results show that 3D culture in inert scaffolds represents a more physiologically normal preparation which has advantages for physiological, pharmacological, toxicological and drug development studies, particularly given the extensive use of such preparations in high throughput and high content systems.
Resumo:
Brain dystrophin is enriched in the postsynaptic densities of pyramidal neurons specialized regions of the subsynaptic cytoskeletal network, which are critical for synaptic transmission and plasticity. Lack of dystrophin in brain structures have been involved with impaired cognitive functions. The brain-derived neurotrophic factor (BDNF) is a regulator of neuronal survival, fast synaptic transmission, and activity-dependent synaptic plasticity. The present study investigated BDNF protein levels by Elisa analysis in prefrontal cortex, cerebellum, hippocampus, striatum and cortex tissues from male dystrophic mdx (n = 5) and normal C57BL10 mouse (n = 5). We observed that the mdx mouse display diminution in BDNF levels in striatum (t = 6.073; df = 6; p = 0.001), while a tendency of decrease in BDNF levels was observed in the prefrontal cortex region (t = 1.962; df = 6; p = 0.096). The cerebellum (t = 1.258; df = 7; p = 0.249), hippocampus (t = 0.631; df = 7; p = 0.548) and cortex (t = 0.572; df = 7; p = 0.586) showed no significant alterations as compared to wt mouse. In conclusion, we demonstrate that only striatum decreased BDNF levels compared with wild-type (wt) mouse, differently to the other areas of the brain. This dystrophin deficiency may be affecting BDNF levels in striatum and contributing, in part, in memory storage and restoring. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Olfactory information modulates innate and social behaviors in rodents and other species. Studies have shown that the medial nucleus of the amygdala (MEA) and the ventral premammillary, nucleus (PMV) are recruited by conspecific odor stimulation. However, the chemical identity of these neurons is not determined. We exposed sexually inexperienced male rats to female or male odors and assessed Fos immunoreactivity (Fos-ir) in neurons expressing NADPH diaphorase activity (NADPHd, a nitric oxide synthase), neuropeptide Urocortin 3, or glutamic acid decarboxylase rnRNA (GAD-67, a GABA-synthesizing enzyme) in the MEA and PMV. Male and female odors elicited Fos-ir in the MEA and PMV neurons, but the number of Fos-immunoreactive neurons was higher following female odor exposure, in both nuclei. We found no difference in odor induced Fos-ir ill the MEA and PMV comparing fed and fasted animals. Ill the MEA, NADPHd neurons colocalized Fos-ir only in response to female odors. In addition, Urocortin 3 neurons comprise a distinct population and they do not express Fos-ir after conspecific odor stimulation. We found that 80% of neurons activated by male odors coexpressed GAD-67 mRNA. Following female odor, 50% of Fos neurons coexpressed GAD-67 rnRNA. The PMV expresses very little GAD-67, and virtually no colocalization with Fos was observed. We found intense NADPHd activity in PMV neurons, some of which coexpressed Fos-ir after exposure to both odors. The majority of the PMV neurons expressing NADPHd colocalized cocaine-and amphetamine-regulated transcript (CART). Our findings suggest that female and male odors engage distinct neuronal populations in the MEA, thereby inducing contextualized behavioral responses according to olfactory cues. In the PMV, NADPHd/CART neurons respond to male and female odors, suggesting a role in neuroendocrine regulation in response to olfactory cues. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Cells recruited by the innate immune response rely on surface-expressed molecules in order to receive signals from the local environment and to perform phagocytosis, cell adhesion, and others processes linked to host defense. Hundreds of surface antigens designated through a cluster of differentiation (CD) number have been used to identify particular populations of leukocytes. Surprisingly, we verified that the genes that encode Cd36 and Cd83 are constitutively expressed in specific neuronal cells. For instance, Cd36 mRNA is expressed in some regions related to circuitry involved in pheromone responses and reproductive behavior. Cd44 expression, reanalyzed and detailed here, is associated with the laminar formation and midline thalamic nuclei in addition to striatum, extended amygdala, and a few hypothalamic, cortical, and hippocampal regions. A systemic immune challenge was able to increase Cd44 expression quickly in the area postrema and motor nucleus of the vagus but not in regions presenting expressive constitutive expression. In contrast to Cd36 and Cd44, Cd83 message was widely distributed from the olfactory bulb to the brain stem reticular formation, sparing the striatopallidum, olivary region, and cerebellum. Its pattern of expression nevertheless remained strongly associated with hypothalamic, thalamic, and hindbrain nuclei. Unlike the other transcripts, Cd83 mRNA was rapidly modulated by restraint stress. Our results indicate that these molecules might play a role in specific neural circuits and present functions other than those attributed to leukocyte biology. The data also suggest that these surface proteins, or their associated mRNA, could be used to label neurons in specific circuits/regions. J. Comp. Neurol. 517:906-924, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
We used c-Fos immunoreactivity to estimate neuronal activation in hypothalamic feeding-regulatory areas of 3-month-old rats fed control or oil-enriched diets (soy or fish) since weaning. While no diet effect was observed in c-Fos immunoreactivity of 24-h fasted animals, the acute response to refeeding was modified by both hyperlipidic diets but with different patterns. Upon refeeding, control-diet rats had significantly increased c-Fos immunoreactivity only in the paraventricular hypothalamic nucleus (PVH, 142%). In soy-diet rats, refeeding with the soy diet increased c-Fos immunoreactivity in dorsomedial hypothalamic nucleus (DMH, 271%) and lateral hypothalamic area (LH, 303%). Refeeding fish-diet rats with the fish diet increased c-Fos immunoreactivity in PVH (161%), DMH (177%), VMH (81%), and ARC (127%). Compared to the fish-diet, c-Fos immunoreactivity was increased in LH by the soy-diet while it was decreased in ventromedial hypothalamic nucleus (VMH) and arcuate hypothalamic nucleus (ARC). Based on the known roles of the activated nuclei, it is suggested that, unlike the fish-diet, the soy-diet induced a potentially obesogenic profile, with high LH and low VMH/PVH activation after refeeding.
Resumo:
We have used P19 embryonal carcinoma cells as in vitro model for early neurogenesis to study ionotropic P2X and metabotropic P2Y receptor-induced Ca2+ transients and their participation in induction of proliferation and differentiation. In embryonic P19 cells, P2Y(1), P2Y(2) and P2X(4) receptors or P2X-heteromultimers with similar P2X4 pharmacology were responsible for ATP and ATP analogue-induced Ca2+ transients. In neuronal-differentiated cells, P2Y(2), P2Y(6), P2X(2) and possibly P2X(2)/P2X(6) heteromeric receptors were the major mediators of the elevations in intracellular free calcium concentration [Ca2+](i). We have collected evidence for the involvement of metabotropic purinergic receptors in proliferation induction of undifferentiated and neural progenitor cells by using a BrdU-incorporation assay. ATP-, UTP-, ADP-, 2-MeS-ATP- and ADP-beta S-induced proliferation in P19 cells was mediated by P2Y, and P2Y2 receptors as judged from pharmacological profiles of receptor responses. ATP-provoked acceleration of neuronal differentiation, determined by analysis of nestin and neuron-specific enolase gene and protein expression, also resulted from P2Y, and P2Y2 receptor activation. Proliferation- and differentiation-induction involved the activation of inositol-trisphosphate sensitive intracellular Ca2+ stores. (C) 2008 ISDN. Published by Elsevier Ltd. All rights reserved.
Resumo:
Long-term memory, a persistent form of synaptic plasticity, requires translation of a subset of mRNA present in neuronal dendrites during a short and critical period through a mechanism not yet fully elucidated. Western blotting analysis revealed a high content of eukaryotic translation initiation factor 5A (eIF5A) in the brain of neonatal rats, a period of intense neurogenesis rate, differentiation and synaptic establishment, when compared to adult rats. Immunohistochemistry analysis revealed that eIF5A is present in the whole brain of adult rats showing a variable content among the cells from different areas (e.g. cortex, hippocampus and cerebellum). A high content of eIF5A in the soma and dendrites of Purkinje cells, key neurons in the control of motor long-term memory in the cerebellum, was observed. Detection of high eIF5A content was revealed in dendritic varicosities of Purkinje cells. Evidence is presented herein that a reduction of eIF5A content is associated to brain aging. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The endocannabinoid system has been implicated in several neurobiological processes, including neurodegeneration and neuro protection. The aim of this study was to evaluate the effects of unilateral retinal ablation on the expression of the cannabinoid receptor subtype 1 (CB1) at both protein and mRNA levels in the optic tectum of the adult chick brain. After different survival times postlesion (2-30 days), the chick brains were subjected to immunohistochemical, immunoblotting, and real-time PCR procedures to evaluate CB1 expression. TUNEL and Fluoro-Jade B were used to verify the possible occurrence of cell death, and immunostaining for the microtubule-associated protein MAP-2 was performed to verify possible dendritic remodeling after lesions. No cell death could be observed in the deafferented tectum, at least up to 30 days postlesion, although Fluoro-Jade B could reveal degenerating axons and terminals. Retinal ablation seems to generate an increase of CB1 protein in the optic tectum and other retinorecipient visual areas, which paralleled an increase in MAP-2 staining. On the other hand, CB, mRNA levels were not changed after retinal ablation. Our results reveal that CB, expression in visual structures of the adult chick brain may be negatively regulated by the retinal innervation. The increase of CB1 receptor expression observed after retinal removal indicates that these receptors are not presynaptic in retinal axons projecting to the tectum and suggests a role of the cannabinoid system in plasticity processes ensuing after lesions. (c) 2008 Wiley-Liss, Inc.
Resumo:
Muscarinic (mAChRs) and nicotinic acetylcholine receptors (nAChRs) are involved in various physiological processes, including neuronal development. We provide evidence for expression of functional nicotinic and muscarinic receptors during differentiation of P19 carcinoma embryonic cells, as an in vitro model of early neurogenesis. We have detected expression and activity alpha(2)-alpha(7), beta(2), beta(4) nAChR and M1-M5 mAChR subtypes during neuronal differentiation. Nicotinic alpha(3) and beta(2) mRNA transcription was induced by addition of retinoic acid to P19 cells. Gene expression Of alpha(2), alpha(4)-alpha(7), beta(4) nAChR subunits decreased during initial differentiation and increased again when P19 cells underwent final maturation. Receptor response in terms of nicotinic agonist-evoked Ca2+, flux was observed in embryonic and neuronal-differentiated cells. Muscarinic receptor response, merely present in undifferentiated P19 cells, increased during neuronal differentiation. The nAChR-induced elevation of intracellular calcium ([Ca2+](i)) response in undifferentiated cells was due to Ca2+ influx. In differentiated P19 neurons the nAChR-induced [Ca2+](i) response was reduced following pretreatment with ryanodine, while the mAChR-induced response was unaffected indicating the contribution of Ca2+ release from ryanodine-sensitive stores to nAChR- but not mAChR-mediated Ca2+ responses. The presence of functional nAChRs in embryonic cells suggests that these receptors are involved in triggering Ca2+ waves during initial neuronal differentiation. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Motor cortex stimulation (MCS) has been used to treat patients with neuropathic pain resistant to other therapeutic approaches; however, the mechanisms of pain control by MCS are still not clearly understood. We have demonstrated that MCS increases the nociceptive threshold of naive conscious rats, with opioid participation. In the present study, the effect of transdural MCS on neuropathic pain in rats subjected to chronic constriction injury of the sciatic nerve was investigated. In addition, the pattern of neuronal activation, evaluated by Fos and Zif268 immunolabel, was performed in the spinal cord and brain sites associated with the modulation of persistent pain. MCS reversed the mechanical hyperalgesia and allodynia induced by peripheral neuropathy. After stimulation, Fos immunoreactivity (Fos-IR) decreased in the dorsal horn of the spinal cord and in the ventral posterior lateral and medial nuclei of the thalamus, when compared to animals with neuropathic pain. Furthermore, the MCS increased the Fos-IR in the periaqueductal gray, the anterior cingulate cortex and the central and basolateral amygdaloid nuclei. Zif268 results were similar to those obtained for Fos, although no changes were observed for Zif268 in the anterior cingulate cortex and the central amygdaloid nucleus after MCS. The present findings suggest that MCS reverts neuropathic pain phenomena in rats, mimicking the effect observed in humans, through activation of the limbic and descending pain inhibitory systems. Further investigation of the mechanisms involved in this effect may contribute to the improvement of the clinical treatment of persistent pain. (c) 2010 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.