960 resultados para NUCLEAR FACTOR KAPPA B


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Partial DNA sequences from two mitochondrial (mt) and one nuclear gene (cytochrome b, 12S rRNA, and C-mos) were used to estimate the phylogenetic relationships among the six extant species of skinks endemic to the Cape Verde Archipelago. The species form a monophyletic unit, indicating a single colonization of the islands, probably from West Africa. Mabuya vaillanti and M. delalandii are sister taxa, as indicated by morphological characters. Mabuya fogoensis and M. stangeri are closely related, but the former is probably paraphyletic. Mabuya spinalis and M. salensis are also probably paraphyletic. Within species, samples from separate islands always form monophyletic groups. Some colonization events can be hypothesized, which are in line with the age of the islands. C-mos variation is concordant with the topology derived from mtDNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glycogen synthase 2 (Gys-2) is the ratelimiting enzyme in the storage of glycogen in liver and adipose tissue, yet little is known about regulation of Gys-2 transcription. The peroxisome proliferator-activated receptors (PPARs) are transcription factors involved in the regulation of lipid and glucose metabolism and might be hypothesized to govern glycogen synthesis as well. Here, we show that Gys-2 is a direct target gene of PPARalpha, PPARbeta/delta and PPARgamma. Expression of Gys-2 is significantly reduced in adipose tissue of PPARalpha-/-, PPARbeta/delta-/- and PPARgamma+/- mice. Furthermore, synthetic PPARbeta/delta, and gamma agonists markedly up-regulate Gys-2 mRNA and protein expression in mouse 3T3-L1 adipocytes. In liver, PPARalpha deletion leads to decreased glycogen levels in the refed state, which is paralleled by decreased expression of Gys-2 in fasted and refed state. Two putative PPAR response elements (PPREs) were identified in the mouse Gys-2 gene: one in the upstream promoter (DR-1prom) and one in intron 1 (DR-1int). It is shown that DR-1int is the response element for PPARs, while DR-1prom is the response element for Hepatic Nuclear Factor 4 alpha (HNF4alpha). In adipose tissue, which does not express HNF4alpha, DR-1prom is occupied by PPARbeta/delta and PPARgamma, yet binding does not translate into transcriptional activation of Gys-2. Overall, we conclude that mouse Gys-2 is a novel PPAR target gene and that transactivation by PPARs and HNF4alpha is mediated by two distinct response elements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is known as a "death ligand"-a member of the TNF superfamily that binds to receptors bearing death domains. As well as causing apoptosis of certain types of tumor cells, TRAIL can activate both NF-kappaB and JNK signalling pathways. To determine the role of TGF-beta-Activated Kinase-1 (TAK1) in TRAIL signalling, we analyzed the effects of adding TRAIL to mouse embryonic fibroblasts (MEFs) derived from TAK1 conditional knockout mice. TAK1-/- MEFs were significantly more sensitive to killing by TRAIL than wild-type MEFs, and failed to activate NF-kappaB or JNK. Overexpression of IKK2-EE, a constitutive activator of NF-kappaB, protected TAK1-/- MEFs against TRAIL killing, suggesting that TAK1 activation of NF-kappaB is critical for the viability of cells treated with TRAIL. Consistent with this model, TRAIL failed to induce the survival genes cIAP2 and cFlipL in the absence of TAK1, whereas activation of NF-kappaB by IKK2-EE restored the levels of both proteins. Moreover, ectopic expression of cFlipL, but not cIAP2, in TAK1-/- MEFs strongly inhibited TRAIL-induced cell death. These results indicate that cells that survive TRAIL treatment may do so by activation of a TAK1-NF-kappaB pathway that drives expression of cFlipL, and suggest that TAK1 may be a good target for overcoming TRAIL resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T cell stimulation requires the input and integration of external signals. Signaling through the T cell receptor (TCR) is known to induce formation of the membrane-tethered CBM complex, comprising CARMA1, BCL10, and MALT1, which is required for TCR-mediated NF-κB activation. TCR signaling has been shown to activate NOTCH proteins, transmembrane receptors also implicated in NF-κB activation. However, the link between TCR-mediated NOTCH signaling and early events leading to induction of NF-κB activity remains unclear. In this report, we demonstrate a novel cytosolic function for NOTCH1 and show that it is essential to CBM complex formation. Using a model of skin allograft rejection, we show in vivo that NOTCH1 acts in the same functional pathway as PKCθ, a T cell-specific kinase important for CBM assembly and classical NF-κB activation. We further demonstrate in vitro NOTCH1 associates physically with PKCθ and CARMA1 in the cytosol. Unexpectedly, when NOTCH1 expression was abrogated using RNAi approaches, interactions between CARMA1, BCL10, and MALT1 were lost. This failure in CBM assembly reduced inhibitor of kappa B alpha phosphorylation and diminished NF-κB-DNA binding. Finally, using a luciferase gene reporter assay, we show the intracellular domain of NOTCH1 can initiate robust NF-κB activity in stimulated T cells, even when NOTCH1 is excluded from the nucleus through modifications that restrict it to the cytoplasm or hold it tethered to the membrane. Collectively, these observations provide evidence that NOTCH1 may facilitate early events during T cell activation by nucleating the CBM complex and initiating NF-κB signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BAFF, a member of the TNF family, is a fundamental survival factor for transitional and mature B cells. BAFF overexpression leads to an expanded B cell compartment and autoimmunity in mice, and elevated amounts of BAFF can be found in the serum of autoimmune patients. APRIL is a related factor that shares receptors with BAFF yet appears to play a different biological role. The BAFF system provides not only potential insight into the development of autoreactive B cells but a relatively simple paradigm to begin considering the balancing act between survival, growth, and death that affects all cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BAFF, APRIL and their receptors play important immunological roles, especially in the B cell arm of the immune system. A number of splice isoforms have been described for both ligands and receptors in this subfamily, some of which are conserved between mouse and human, while others are species-specific. Structural and mutational analyses have revealed key determinants of receptor-ligand specificity. BAFF-R has a strong selectivity for BAFF; BCMA has a higher affinity for APRIL than for BAFF, while TACI binds both ligands equally well. The molecular signaling events downstream of BAFF-R, BCMA and TACI are still incompletely characterized. Survival appears to be mediated by upregulation of Bcl-2 family members through NF-kappaB activation, degradation of the pro-apototic Bim protein, and control of subcellular localization of PCKdelta. Very little is known about other signaling events associated with receptor engagement by BAFF and APRIL that lead for example to B cell activation or to CD40L-independent Ig switch.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone homeostasis is a well-balanced process that is largely dependent on the contribution of both bone-forming osteoblasts and bone-resorbing osteoclasts. A new study (Wan et al., 2007) suggests a previously unsuspected role for the transcription factor PPARgamma in promoting bone progenitors to the osteoclastic lineage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nuclear factor of activated T cells (NFAT) family of transcription factors controls calcium signaling in T lymphocytes. In this study, we have identified a crucial regulatory role of the transcription factor NFATc2 in T cell-dependent experimental colitis. Similar to ulcerative colitis in humans, the expression of NFATc2 was up-regulated in oxazolone-induced chronic intestinal inflammation. Furthermore, NFATc2 deficiency suppressed colitis induced by oxazolone administration. This finding was associated with enhanced T cell apoptosis in the lamina propria and strikingly reduced production of IL-6, -13, and -17 by mucosal T lymphocytes. Further studies using knockout mice showed that IL-6, rather than IL-23 and -17, are essential for oxazolone colitis induction. Administration of hyper-IL-6 blocked the protective effects of NFATc2 deficiency in experimental colitis, suggesting that IL-6 signal transduction plays a major pathogenic role in vivo. Finally, adoptive transfer of IL-6 and wild-type T cells demonstrated that oxazolone colitis is critically dependent on IL-6 production by T cells. Collectively, these results define a unique regulatory role for NFATc2 in colitis by controlling mucosal T cell activation in an IL-6-dependent manner. NFATc2 in T cells thus emerges as a potentially new therapeutic target for inflammatory bowel diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The latent membrane protein 1 (LMP1) encoded by the Epstein-Barr virus functions as a constitutively activated receptor of the tumor necrosis factor receptor family. LMP1 is a short-lived protein that is ubiquitinated and degraded by the proteasome. We have previously shown that LMP1 recruits the adapter protein tumor necrosis factor receptor-associated factor 3 (TRAF3) to lipid rafts. To test if TRAFs are involved in LMP1's ubiquitination, we have mutated the LMP1 CTAR1 site that has been identified as a TRAF binding site. We show that the CTAR1 mutant (CTAR1(-)) is expressed after transfection at a similar level to wild-type LMP1, and behaves as wild-type LMP1 with respect to membrane localization. However, CTAR1(-) does not bind TRAF3. We demonstrate that ubiquitination of CTAR1(-) is significantly reduced when compared to wild-type LMP1. In addition, the expression of wild-type LMP1 induces the ubiquitination, an effect that is significantly reduced when the CTAR1(-) is expressed. Taken together, our results suggest that TRAF proteins are involved in the ubiquitination of LMP1, and that their binding to LMP1 may facilitate their own ubiquitination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cytokine BAFF binds to the receptors TACI, BCMA, and BAFF-R on B cells, whereas APRIL binds to TACI and BCMA only. The signaling properties of soluble trimeric BAFF (BAFF 3-mer) were compared with those of higher-order BAFF oligomers. All forms of BAFF bound BAFF-R and TACI, and elicited BAFF-R-dependent signals in primary B cells. In contrast, signaling through TACI in mature B cells or plasmablasts was only achieved by higher-order BAFF and APRIL oligomers, all of which were also po-tent activators of a multimerization-dependent reporter signaling pathway. These results indicate that, although BAFF-R and TACI can provide B cells with similar signals, only BAFF-R, but not TACI, can respond to soluble BAFF 3-mer, which is the main form of BAFF found in circulation. BAFF 60-mer, an efficient TACI agonist, was also detected in plasma of BAFF transgenic and nontransgenic mice and was more than 100-fold more active than BAFF 3-mer for the activation of multimerization-dependent signals. TACI supported survival of activated B cells and plasmablasts in vitro, providing a rational basis to explain the immunoglobulin deficiency reported in TACI-deficient persons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Our laboratory has previously established in vitro that a caspase-generated RasGAP NH(2)-terminal moiety, called fragment N, potently protects cells, including insulinomas, from apoptotic stress. We aimed to determine whether fragment N can increase the resistance of pancreatic beta-cells in a physiological setting. RESEARCH DESIGN AND METHODS: A mouse line, called rat insulin promoter (RIP)-N, was generated that bears a transgene containing the rat insulin promoter followed by the cDNA-encoding fragment N. The histology, functionality, and resistance to stress of RIP-N islets were then assessed. RESULTS: Pancreatic beta-cells of RIP-N mice express fragment N, activate Akt, and block nuclear factor kappaB activity without affecting islet cell proliferation or the morphology and cellular composition of islets. Intraperitoneal glucose tolerance tests revealed that RIP-N mice control their glycemia similarly as wild-type mice throughout their lifespan. Moreover, islets isolated from RIP-N mice showed normal glucose-induced insulin secretory capacities. They, however, displayed increased resistance to apoptosis induced by a series of stresses including inflammatory cytokines, fatty acids, and hyperglycemia. RIP-N mice were also protected from multiple low-dose streptozotocin-induced diabetes, and this was associated with reduced in vivo beta-cell apoptosis. CONCLUSIONS: Fragment N efficiently increases the overall resistance of beta-cells to noxious stimuli without interfering with the physiological functions of the cells. Fragment N and the pathway it regulates represent, therefore, a potential target for the development of antidiabetes tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcineurin inhibitors such as cyclosporin A (CsA) are the mainstay of immunosuppressive treatment for organ transplant recipients. Squamous cell carcinoma (SCC) of the skin is a major complication of treatment with these drugs, with a 65 to 100-fold higher risk than in the normal population. By contrast, the incidence of basal cell carcinoma (BCC), the other major keratinocyte-derived tumour of the skin, of melanoma and of internal malignancies increases to a significantly lesser extent. Here we report that genetic and pharmacological suppression of calcineurin/nuclear factor of activated T cells (NFAT) function promotes tumour formation in mouse skin and in xenografts, in immune compromised mice, of H-ras(V12) (also known as Hras1)-expressing primary human keratinocytes or keratinocyte-derived SCC cells. Calcineurin/NFAT inhibition counteracts p53 (also known as TRP53)-dependent cancer cell senescence, thereby increasing tumorigenic potential. ATF3, a member of the 'enlarged' AP-1 family, is selectively induced by calcineurin/NFAT inhibition, both under experimental conditions and in clinically occurring tumours, and increased ATF3 expression accounts for suppression of p53-dependent senescence and enhanced tumorigenic potential. Thus, intact calcineurin/NFAT signalling is critically required for p53 and senescence-associated mechanisms that protect against skin squamous cancer development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A key element for the development of suitable anti-cancer drugs is the identification of cancer-specific enzymatic activities that can be therapeutically targeted. Mucosa-associated lymphoid tissue transformation protein 1 (MALT1) is a proto-oncogene that contributes to tumorigenesis in diffuse large B-cell lymphoma (DLBCL) of the activated B-cell (ABC) subtype, the least curable subtype of DLBCL. Recent data suggest that MALT1 has proteolytic activity, but it is unknown whether this activity is relevant for tumor growth. Here we report that MALT1 is constitutively active in DLBCL lines of the ABC but not the GCB subtype. Inhibition of the MALT1 proteolytic activity led to reduced expression of growth factors and apoptosis inhibitors, and specifically affected the growth and survival of ABC DLBCL lines. These results demonstrate a key role for the proteolytic activity of MALT1 in DLBCL of the ABC subtype, and provide a rationale for the development of pharmacological inhibitors of MALT1 in DLBCL therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated if changes in hepatic lipid metabolism produced by old age are related to changes in liver peroxisome proliferator-activated receptor alpha (PPARalpha). Our results indicate that 18-month-old rats showed a marked decrease in the expression and activity of liver PPARalpha, as shown by significant reductions in PPARalpha mRNA, protein and binding activity, resulting in a reduction in the relative mRNA levels of PPARalpha target genes, such as liver-carnitine-palmitoyl transferase-I (CPT-I) and mitochondrial medium-chain acyl-CoA dehydrogenase (MCAD). Further, in accordance with a liver PPARalpha deficiency in old rats, treatment of old animals with a therapeutic dose of gemfibrozil (GFB) (3mg/kg per day, 21 days) was ineffective in reducing plasma triglyceride concentrations (TG), despite attaining a 50% reduction in TG when GFB was administered to young animals at the same dose and length of treatment. We hypothesize that the decrease in hepatic PPARalpha can be related to a state of leptin resistance present in old animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and aims: Increased pancreatitis associated protein (PAP) mRNA has been reported in active inflammatory bowel disease (IBD). The aims of the current study were to characterise PAP production in IBD and the effects of PAP on inflammation. Patients and methods: Serum PAP levels were determined in healthy controls (n¿=¿29), inflammatory controls (n¿=¿14), and IBD patients (n¿=¿171). Ex vivo PAP secretion in intestinal tissue was measured in 56 IBD patients and 13 healthy controls. Cellular origin of PAP was determined by immunohistochemistry. The effects of exogenous PAP on nuclear factor ¿B (NF¿B) activation, proinflammatory cytokine production, and endothelial adhesion molecule expression were also analysed ex vivo. Results: Patients with active IBD had increased serum PAP levels compared with controls, and these levels correlated with clinical and endoscopic disease severity. Ex vivo intestinal PAP synthesis was increased in active IBD and correlated with endoscopic and histological severity of inflammatory lesions. PAP localised to colonic Paneth cells. Incubation of mucosa from active Crohn¿s disease with PAP dose dependently reduced proinflammatory cytokines secretion. PAP prevented TNF-¿ induced NF¿B activation in monocytic, epithelial, and endothelial cells and reduced proinflammatory cytokine mRNA levels and adhesion molecule expression. Conclusions: PAP is synthesised by Paneth cells and is overexpressed in colonic tissue of active IBD. PAP inhibits NF¿B activation and downregulates cytokine production and adhesion molecule expression in inflamed tissue. It may represent an anti-inflammatory mechanism and new therapeutic strategy in IBD.