973 resultados para Monte - Carlo study


Relevância:

100.00% 100.00%

Publicador:

Resumo:

GCMC simulations are applied to the adsorption of sub-critical methanol and ethanol on graphitized carbon black at 300 K. The carbon black was modelled both with and without carbonyl functional groups. Large differences are seen between the amounts adsorbed for different carbonyl configurations at low pressure prior to monolayer coverage. Once a monolayer has been formed on the carbon black, the adsorption behaviour is similar between the model surfaces with and without functional groups. Simulation isotherms for the case of low carbonyl concentrations or no carbonyls are qualitatively similar to the few experimental isotherms available in the literature for methanol and ethanol adsorption on highly graphitized carbon black. Isosteric heats and adsorbed phase heat capacities are shown to be very sensitive to carbonyl configurations. A maximum is observed in the adsorbed phase heat capacity of the alcohols for all simulations but is unrealistically high for the case of a plain graphite surface. The addition of carbonyls to the surface greatly reduces this maximum and approaches experimental data with carbonyl concentration as low as 0.09 carbonyls/nm(2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adsorption of Lennard-Jones fluids (argon and nitrogen) onto a graphitized thermal carbon black surface was studied with a Grand Canonical Monte Carlo Simulation (GCMC). The surface was assumed to be finite in length and composed of three graphene layers. When the GCMC simulation was used to describe adsorption on a graphite surface, an over-prediction of the isotherm was consistently observed in the pressure regions where the first and second layers are formed. To remove this over-prediction, surface mediation was accounted for to reduce the fluid-fluid interaction. Do and co-workers have introduced the so-called surface-mediation damping factor to correct the over-prediction for the case of a graphite surface of infinite extent, and this approach has yielded a good description of the adsorption isotherm. In this paper, the effects of the finite size of the graphene layer on the adsorption isotherm and how these would affect the extent of the surface mediation were studied. It was found that this finite-surface model provides a better description of the experimental data for graphitized thermal carbon black of high surface area (i.e. small crystallite size) while the infinite- surface model describes data for carbon black of very low surface area (i.e. large crystallite size).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper shows how the angular uncertainties can be determined for a rotary-laser automatic theodolite of the type used in (indoor-GPS) iGPS networks. Initially, the fundamental physics of the rotating head device is used to propagate uncertainties using Monte Carlo simulation. This theoretical element of the study shows how the angular uncertainty is affected by internal parameters, the actual values of which are estimated. Experiments are then carried out to determine the actual uncertainty in the azimuth angle. Results are presented that show that uncertainty decreases with sampling duration. Other significant findings are that uncertainty is relatively constant throughout the working volume and that the uncertainty value is not dependent on the size of the reference angle. © 2009 IMechE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate by means of Monte Carlo simulation and finite-size scaling analysis the critical properties of the three dimensional O (5) non-linear σ model and of the antiferromagnetic RP^(2) model, both of them regularized on a lattice. High accuracy estimates are obtained for the critical exponents, universal dimensionless quantities and critical couplings. It is concluded that both models belong to the same universality class, provided that rather non-standard identifications are made for the momentum-space propagator of the RP^(2) model. We have also investigated the phase diagram of the RP^(2) model extended by a second-neighbor interaction. A rich phase diagram is found, where most of the phase transitions are of the first order.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent advent of new technologies has led to huge amounts of genomic data. With these data come new opportunities to understand biological cellular processes underlying hidden regulation mechanisms and to identify disease related biomarkers for informative diagnostics. However, extracting biological insights from the immense amounts of genomic data is a challenging task. Therefore, effective and efficient computational techniques are needed to analyze and interpret genomic data. In this thesis, novel computational methods are proposed to address such challenges: a Bayesian mixture model, an extended Bayesian mixture model, and an Eigen-brain approach. The Bayesian mixture framework involves integration of the Bayesian network and the Gaussian mixture model. Based on the proposed framework and its conjunction with K-means clustering and principal component analysis (PCA), biological insights are derived such as context specific/dependent relationships and nested structures within microarray where biological replicates are encapsulated. The Bayesian mixture framework is then extended to explore posterior distributions of network space by incorporating a Markov chain Monte Carlo (MCMC) model. The extended Bayesian mixture model summarizes the sampled network structures by extracting biologically meaningful features. Finally, an Eigen-brain approach is proposed to analyze in situ hybridization data for the identification of the cell-type specific genes, which can be useful for informative blood diagnostics. Computational results with region-based clustering reveals the critical evidence for the consistency with brain anatomical structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

People, animals and the environment can be exposed to multiple chemicals at once from a variety of sources, but current risk assessment is usually carried out based on one chemical substance at a time. In human health risk assessment, ingestion of food is considered a major route of exposure to many contaminants, namely mycotoxins, a wide group of fungal secondary metabolites that are known to potentially cause toxicity and carcinogenic outcomes. Mycotoxins are commonly found in a variety of foods including those intended for consumption by infants and young children and have been found in processed cereal-based foods available in the Portuguese market. The use of mathematical models, including probabilistic approaches using Monte Carlo simulations, constitutes a prominent issue in human health risk assessment in general and in mycotoxins exposure assessment in particular. The present study aims to characterize, for the first time, the risk associated with the exposure of Portuguese children to single and multiple mycotoxins present in processed cereal-based foods (CBF). Portuguese children (0-3 years old) food consumption data (n=103) were collected using a 3 days food diary. Contamination data concerned the quantification of 12 mycotoxins (aflatoxins, ochratoxin A, fumonisins and trichothecenes) were evaluated in 20 CBF samples marketed in 2014 and 2015 in Lisbon; samples were analyzed by HPLC-FLD, LC-MS/MS and GC-MS. Daily exposure of children to mycotoxins was performed using deterministic and probabilistic approaches. Different strategies were used to treat the left censored data. For aflatoxins, as carcinogenic compounds, the margin of exposure (MoE) was calculated as a ratio of BMDL (benchmark dose lower confidence limit) to the aflatoxin exposure. The magnitude of the MoE gives an indication of the risk level. For the remaining mycotoxins, the output of exposure was compared to the dose reference values (TDI) in order to calculate the hazard quotients (ratio between exposure and a reference dose, HQ). For the cumulative risk assessment of multiple mycotoxins, the concentration addition (CA) concept was used. The combined margin of exposure (MoET) and the hazard index (HI) were calculated for aflatoxins and the remaining mycotoxins, respectively. 71% of CBF analyzed samples were contaminated with mycotoxins (with values below the legal limits) and approximately 56% of the studied children consumed CBF at least once in these 3 days. Preliminary results showed that children exposure to single mycotoxins present in CBF were below the TDI. Aflatoxins MoE and MoET revealed a reduced potential risk by exposure through consumption of CBF (with values around 10000 or more). HQ and HI values for the remaining mycotoxins were below 1. Children are a particularly vulnerable population group to food contaminants and the present results point out an urgent need to establish legal limits and control strategies regarding the presence of multiple mycotoxins in children foods in order to protect their health. The development of packaging materials with antifungal properties is a possible solution to control the growth of moulds and consequently to reduce mycotoxin production, contributing to guarantee the quality and safety of foods intended for children consumption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let (X, Y) be bivariate normal random vectors which represent the responses as a result of Treatment 1 and Treatment 2. The statistical inference about the bivariate normal distribution parameters involving missing data with both treatment samples is considered. Assuming the correlation coefficient ρ of the bivariate population is known, the MLE of population means and variance (ξ, η, and σ2) are obtained. Inferences about these parameters are presented. Procedures of constructing confidence interval for the difference of population means ξ – η and testing hypothesis about ξ – η are established. The performances of the new estimators and testing procedure are compared numerically with the method proposed in Looney and Jones (2003) on the basis of extensive Monte Carlo simulation. Simulation studies indicate that the testing power of the method proposed in this thesis study is higher.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detecting change points in epidemic models has been studied by many scholars. Yao (1993) summarized five existing test statistics in the literature. Out of those test statistics, it was observed that the likelihood ratio statistic showed its standout power. However, all of the existing test statistics are based on an assumption that population variance is known, which is an unrealistic assumption in practice. To avoid assuming known population variance, a new test statistic for detecting epidemic models is studied in this thesis. The new test statistic is a parameter-free test statistic which is more powerful compared to the existing test statistics. Different sample sizes and lengths of epidemic durations are used for the power comparison purpose. Monte Carlo simulation is used to find the critical values of the new test statistic and to perform the power comparison. Based on the Monte Carlo simulation result, it can be concluded that the sample size and the length of the duration have some effect on the power of the tests. It can also be observed that the new test statistic studied in this thesis has higher power than the existing test statistics do in all of cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper discusses the evaluation of the uncertainty of a multivariate quantity using the Law of Propagation of Uncertainty defined in the Guide to the Expression of Uncertainty in Measurement (GUM) and a Monte Carlo method according to the GUM’s Supplement 2. The quantity analysed is the electrical impedance, which is not a scalar but a complex quantity. The used measuring method allows the evaluation of the impedance and of its uncertainty in different ways and the corresponding results are presented, compared and discussed. For comparison purposes, results of the impedance uncertainty obtained using the NIST Uncertainty Machine are also presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Often in biomedical research, we deal with continuous (clustered) proportion responses ranging between zero and one quantifying the disease status of the cluster units. Interestingly, the study population might also consist of relatively disease-free as well as highly diseased subjects, contributing to proportion values in the interval [0, 1]. Regression on a variety of parametric densities with support lying in (0, 1), such as beta regression, can assess important covariate effects. However, they are deemed inappropriate due to the presence of zeros and/or ones. To evade this, we introduce a class of general proportion density, and further augment the probabilities of zero and one to this general proportion density, controlling for the clustering. Our approach is Bayesian and presents a computationally convenient framework amenable to available freeware. Bayesian case-deletion influence diagnostics based on q-divergence measures are automatic from the Markov chain Monte Carlo output. The methodology is illustrated using both simulation studies and application to a real dataset from a clinical periodontology study.