952 resultados para Mixed integer non-linear programming (MINLP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the major challenges in measuring efficiency in terms of resources and outcomes is the assessment of the evolution of units over time. Although Data Envelopment Analysis (DEA) has been applied for time series datasets, DEA models, by construction, form the reference set for inefficient units (lambda values) based on their distance from the efficient frontier, that is, in a spatial manner. However, when dealing with temporal datasets, the proximity in time between units should also be taken into account, since it reflects the structural resemblance among time periods of a unit that evolves. In this paper, we propose a two-stage spatiotemporal DEA approach, which captures both the spatial and temporal dimension through a multi-objective programming model. In the first stage, DEA is solved iteratively extracting for each unit only previous DMUs as peers in its reference set. In the second stage, the lambda values derived from the first stage are fed to a Multiobjective Mixed Integer Linear Programming model, which filters peers in the reference set based on weights assigned to the spatial and temporal dimension. The approach is demonstrated on a real-world example drawn from software development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ebben a tanulmányban a szerző egy új harmóniakereső metaheurisztikát mutat be, amely a minimális időtartamú erőforrás-korlátos ütemezések halmazán a projekt nettó jelenértékét maximalizálja. Az optimális ütemezés elméletileg két egész értékű (nulla-egy típusú) programozási feladat megoldását jelenti, ahol az első lépésben meghatározzuk a minimális időtartamú erőforrás-korlátos ütemezések időtartamát, majd a második lépésben az optimális időtartamot feltételként kezelve megoldjuk a nettó jelenérték maximalizálási problémát minimális időtartamú erőforrás-korlátos ütemezések halmazán. A probléma NP-hard jellege miatt az egzakt megoldás elfogadható idő alatt csak kisméretű projektek esetében képzelhető el. A bemutatandó metaheurisztika a Csébfalvi (2007) által a minimális időtartamú erőforrás-korlátos ütemezések időtartamának meghatározására és a tevékenységek ennek megfelelő ütemezésére kifejlesztett harmóniakereső metaheurisztika továbbfejlesztése, amely az erőforrás-felhasználási konfliktusokat elsőbbségi kapcsolatok beépítésével oldja fel. Az ajánlott metaheurisztika hatékonyságának és életképességének szemléltetésére számítási eredményeket adunk a jól ismert és népszerű PSPLIB tesztkönyvtár J30 részhalmazán futtatva. Az egzakt megoldás generálásához egy korszerű MILP-szoftvert (CPLEX) alkalmaztunk. _______________ This paper presents a harmony search metaheuristic for the resource-constrained project scheduling problem with discounted cash flows. In the proposed approach, a resource-constrained project is characterized by its „best” schedule, where best means a makespan minimal resource constrained schedule for which the net present value (NPV) measure is maximal. Theoretically the optimal schedule searching process is formulated as a twophase mixed integer linear programming (MILP) problem, which can be solved for small-scale projects in reasonable time. The applied metaheuristic is based on the "conflict repairing" version of the "Sounds of Silence" harmony search metaheuristic developed by Csébfalvi (2007) for the resource-constrained project scheduling problem (RCPSP). In order to illustrate the essence and viability of the proposed harmony search metaheuristic, we present computational results for a J30 subset from the well-known and popular PSPLIB. To generate the exact solutions a state-of-the-art MILP solver (CPLEX) was used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A készpénz-optimalizálás az operációkutatás régóta kutatott területe. Ebben a cikkben valós adatokon mutatok be egy banki készpénz-optimalizálást, melyet lineáris programozási feladatok segítségével végeztem el. A cikkben összehasonlítottam a determinisztikus és a sztochasztikus megközelítéseket is. A hagyományos készpénz-optimalizáción két területen léptem túl: egyrészt vizsgáltam a bankfiók valutagazdálkodását is, másrészről a bankfiókok közötti készpénzszállítás lehetőségét is. A vegyes egészértékű lineáris programozási feladatok megoldására a glpk nevű szabad hozzáférésű szoftvert használtam, így a cikkből képet kaphatunk a megoldó (solver) felhasználhatóságáról és korlátairól is. ___________ In recent years both operational research and quantitative ¯nance have paid much attention to cash management issues. In this paper we present a cash management study which is based on real world data and uses a mixed integer linear programming (MILP) model as the main tool. In the paper we compare deterministic and stochastic approaches. The classical cash management problem is extended in two ways: we considered the possibility of bank offices keeping more than one currency and also investigated the opportunity of cash transports between bank offices. The MILP problem was solved with glpk (GNU Linear Programming Kit), a free software. The reader can also get a feel of how to use this solver.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research is motivated by the need for considering lot sizing while accepting customer orders in a make-to-order (MTO) environment, in which each customer order must be delivered by its due date. Job shop is the typical operation model used in an MTO operation, where the production planner must make three concurrent decisions; they are order selection, lot size, and job schedule. These decisions are usually treated separately in the literature and are mostly led to heuristic solutions. The first phase of the study is focused on a formal definition of the problem. Mathematical programming techniques are applied to modeling this problem in terms of its objective, decision variables, and constraints. A commercial solver, CPLEX is applied to solve the resulting mixed-integer linear programming model with small instances to validate the mathematical formulation. The computational result shows it is not practical for solving problems of industrial size, using a commercial solver. The second phase of this study is focused on development of an effective solution approach to this problem of large scale. The proposed solution approach is an iterative process involving three sequential decision steps of order selection, lot sizing, and lot scheduling. A range of simple sequencing rules are identified for each of the three subproblems. Using computer simulation as the tool, an experiment is designed to evaluate their performance against a set of system parameters. For order selection, the proposed weighted most profit rule performs the best. The shifting bottleneck and the earliest operation finish time both are the best scheduling rules. For lot sizing, the proposed minimum cost increase heuristic, based on the Dixon-Silver method performs the best, when the demand-to-capacity ratio at the bottleneck machine is high. The proposed minimum cost heuristic, based on the Wagner-Whitin algorithm is the best lot-sizing heuristic for shops of a low demand-to-capacity ratio. The proposed heuristic is applied to an industrial case to further evaluate its performance. The result shows it can improve an average of total profit by 16.62%. This research contributes to the production planning research community with a complete mathematical definition of the problem and an effective solution approach to solving the problem of industry scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a new model for the Heterogeneous p-median Problem (HPM), proposed to recover the hidden category structures present in the data provided by a sorting task procedure, a popular approach to understand heterogeneous individual’s perception of products and brands. This new model is named as the Penalty-free Heterogeneous p-median Problem (PFHPM), a single-objective version of the original problem, the HPM. The main parameter in the HPM is also eliminated, the penalty factor. It is responsible for the weighting of the objective function terms. The adjusting of this parameter controls the way that the model recovers the hidden category structures present in data, and depends on a broad knowledge of the problem. Additionally, two complementary formulations for the PFHPM are shown, both mixed integer linear programming problems. From these additional formulations lower-bounds were obtained for the PFHPM. These values were used to validate a specialized Variable Neighborhood Search (VNS) algorithm, proposed to solve the PFHPM. This algorithm provided good quality solutions for the PFHPM, solving artificial generated instances from a Monte Carlo Simulation and real data instances, even with limited computational resources. Statistical analyses presented in this work suggest that the new algorithm and model, the PFHPM, can recover more accurately the original category structures related to heterogeneous individual’s perceptions than the original model and algorithm, the HPM. Finally, an illustrative application of the PFHPM is presented, as well as some insights about some new possibilities for it, extending the new model to fuzzy environments

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I explore and analyze a problem of finding the socially optimal capital requirements for financial institutions considering two distinct channels of contagion: direct exposures among the institutions, as represented by a network and fire sales externalities, which reflect the negative price impact of massive liquidation of assets.These two channels amplify shocks from individual financial institutions to the financial system as a whole and thus increase the risk of joint defaults amongst the interconnected financial institutions; this is often referred to as systemic risk. In the model, there is a trade-off between reducing systemic risk and raising the capital requirements of the financial institutions. The policymaker considers this trade-off and determines the optimal capital requirements for individual financial institutions. I provide a method for finding and analyzing the optimal capital requirements that can be applied to arbitrary network structures and arbitrary distributions of investment returns.

In particular, I first consider a network model consisting only of direct exposures and show that the optimal capital requirements can be found by solving a stochastic linear programming problem. I then extend the analysis to financial networks with default costs and show the optimal capital requirements can be found by solving a stochastic mixed integer programming problem. The computational complexity of this problem poses a challenge, and I develop an iterative algorithm that can be efficiently executed. I show that the iterative algorithm leads to solutions that are nearly optimal by comparing it with lower bounds based on a dual approach. I also show that the iterative algorithm converges to the optimal solution.

Finally, I incorporate fire sales externalities into the model. In particular, I am able to extend the analysis of systemic risk and the optimal capital requirements with a single illiquid asset to a model with multiple illiquid assets. The model with multiple illiquid assets incorporates liquidation rules used by the banks. I provide an optimization formulation whose solution provides the equilibrium payments for a given liquidation rule.

I further show that the socially optimal capital problem using the ``socially optimal liquidation" and prioritized liquidation rules can be formulated as a convex and convex mixed integer problem, respectively. Finally, I illustrate the results of the methodology on numerical examples and

discuss some implications for capital regulation policy and stress testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A scenario-based two-stage stochastic programming model for gas production network planning under uncertainty is usually a large-scale nonconvex mixed-integer nonlinear programme (MINLP), which can be efficiently solved to global optimality with nonconvex generalized Benders decomposition (NGBD). This paper is concerned with the parallelization of NGBD to exploit multiple available computing resources. Three parallelization strategies are proposed, namely, naive scenario parallelization, adaptive scenario parallelization, and adaptive scenario and bounding parallelization. Case study of two industrial natural gas production network planning problems shows that, while the NGBD without parallelization is already faster than a state-of-the-art global optimization solver by an order of magnitude, the parallelization can improve the efficiency by several times on computers with multicore processors. The adaptive scenario and bounding parallelization achieves the best overall performance among the three proposed parallelization strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cette thèse est une contribution à la modélisation, la planification et l’optimisation du transport pour l’approvisionnement en bois de forêt des industries de première transformation. Dans ce domaine, les aléas climatiques (mise au sol des bois par les tempêtes), sanitaires (attaques bactériologiques et fongiques des bois) et commerciaux (variabilité et exigence croissante des marchés) poussent les divers acteurs du secteur (entrepreneurs et exploitants forestiers, transporteurs) à revoir l’organisation de la filière logistique d’approvisionnement, afin d’améliorer la qualité de service (adéquation offre-demande) et de diminuer les coûts. L’objectif principal de cette thèse était de proposer un modèle de pilotage améliorant la performance du transport forestier, en respectant les contraintes et les pratiques du secteur. Les résultats établissent une démarche de planification hiérarchique des activités de transport à deux niveaux de décision, tactique et opérationnel. Au niveau tactique, une optimisation multi-périodes permet de répondre aux commandes en minimisant l’activité globale de transport, sous contrainte de capacité agrégée des moyens de transport accessibles. Ce niveau permet de mettre en œuvre des politiques de lissage de charge et d’organisation de sous-traitance ou de partenariats entre acteurs de transport. Au niveau opérationnel, les plans tactiques alloués à chaque transporteur sont désagrégés, pour permettre une optimisation des tournées des flottes, sous contrainte des capacités physiques de ces flottes. Les modèles d’optimisation de chaque niveau sont formalisés en programmation linéaire mixte avec variables binaires. L’applicabilité des modèles a été testée en utilisant un jeu de données industrielles en région Aquitaine et a montré des améliorations significatives d’exploitation des capacités de transport par rapport aux pratiques actuelles. Les modèles de décision ont été conçus pour s’adapter à tout contexte organisationnel, partenarial ou non : la production du plan tactique possède un caractère générique sans présomption de l’organisation, celle-ci étant prise en compte, dans un deuxième temps, au niveau de l’optimisation opérationnelle du plan de transport de chaque acteur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effective supplier evaluation and purchasing processes are of vital importance to business organizations, making the suppliers selection problem a fundamental key issue to their success. We consider a complex supplier selection problem with multiple products where minimum package quantities, minimum order values related to delivery costs, and discounted pricing schemes are taken into account. Our main contribution is to present a mixed integer linear programming (MILP) model for this supplier selection problem. The model is used to solve several examples including three real case studies from an electronic equipment assembly company.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES AND STUDY METHOD: There are two subjects in this thesis: “Lot production size for a parallel machine scheduling problem with auxiliary equipment” and “Bus holding for a simulated traffic network”. Although these two themes seem unrelated, the main idea is the optimization of complex systems. The “Lot production size for a parallel machine scheduling problem with auxiliary equipment” deals with a manufacturing setting where sets of pieces form finished products. The aim is to maximize the profit of the finished products. Each piece may be processed in more than one mold. Molds must be mounted on machines with their corresponding installation setup times. The key point of our methodology is to solve the single period lot-sizing decisions for the finished products together with the piece-mold and the mold-machine assignments, relaxing the constraint that a single mold may not be used in two machines at the same time. For the “Bus holding for a simulated traffic network” we deal with One of the most annoying problems in urban bus operations is bus bunching, which happens when two or more buses arrive at a stop nose to tail. Bus bunching reflects an unreliable service that affects transit operations by increasing passenger-waiting times. This work proposes a linear mathematical programming model that establishes bus holding times at certain stops along a transit corridor to avoid bus bunching. Our approach needs real-time input, so we simulate a transit corridor and apply our mathematical model to the data generated. Thus, the inherent variability of a transit system is considered by the simulation, while the optimization model takes into account the key variables and constraints of the bus operation. CONTRIBUTIONS AND CONCLUSIONS: For the “Lot production size for a parallel machine scheduling problem with auxiliary equipment” the relaxation we propose able to find solutions more efficiently, moreover our experimental results show that most of the solutions verify that molds are non-overlapping even if they are installed on several machines. We propose an exact integer linear programming, a Relax&Fix heuristic, and a multistart greedy algorithm to solve this problem. Experimental results on instances based on real-world data show the efficiency of our approaches. The mathematical model and the algorithm for the lot production size problem, showed in this research, can be used for production planners to help in the scheduling of the manufacturing. For the “Bus holding for a simulated traffic network” most of the literature considers quadratic models that minimize passenger-waiting times, but they are harder to solve and therefore difficult to operate by real-time systems. On the other hand, our methodology reduces passenger-waiting times efficiently given our linear programming model, with the characteristic of applying control intervals just every 5 minutes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives and study method: The objective of this study is to develop exact algorithms that can be used as management tools for the agricultural production planning and to obtain exact solutions for two of the most well known twodimensional packing problems: the strip packing problem and the bin packing problem. For the agricultural production planning problem we propose a new hierarchical scheme of three stages to improve the current agricultural practices. The objective of the first stage is to delineate rectangular and homogeneous management zones into the farmer’s plots considering the physical and chemical soil properties. This is an important task because the soil properties directly affect the agricultural production planning. The methodology for this stage is based on a new method called “Positions and Covering” that first generates all the possible positions in which the plot can be delineated. Then, we use a mathematical model of linear programming to obtain the optimal physical and chemical management zone delineation of the plot. In the second stage the objective is to determine the optimal crop pattern that maximizes the farmer’s profit taken into account the previous management zones delineation. In this case, the crop pattern is affected by both management zones delineation, physical and chemical. A mixed integer linear programming is used to solve this stage. The objective of the last stage is to determine in real-time the amount of water to irrigate in each crop. This stage takes as input the solution of the crop planning stage, the atmospheric conditions (temperature, radiation, etc.), the humidity level in plots, and the physical management zones of plots, just to name a few. This procedure is made in real-time during each irrigation period. A linear programming is used to solve this problem. A breakthrough happen when we realize that we could propose some adaptations of the P&C methodology to obtain optimal solutions for the two-dimensional packing problem and the strip packing. We empirically show that our methodologies are efficient on instances based on real data for both problems: agricultural and two-dimensional packing problems. Contributions and conclusions: The exact algorithms showed in this study can be used in the making-decision support for agricultural planning and twodimensional packing problems. For the agricultural planning problem, we show that the implementation of the new hierarchical approach can improve the farmer profit between 5.27% until 8.21% through the optimization of the natural resources. An important characteristic of this problem is that the soil properties (physical and chemical) and the real-time factors (climate, humidity level, evapotranspiration, etc.) are incorporated. With respect to the two-dimensional packing problems, one of the main contributions of this study is the fact that we have demonstrate that many of the best solutions founded in literature by others approaches (heuristics approaches) are the optimal solutions. This is very important because some of these solutions were up to now not guarantee to be the optimal solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a stochastic mixed-integer linear programming approach for solving the self-scheduling problem of a price-taker thermal and wind power producer taking part in a pool-based electricity market. Uncertainty on electricity price and wind power is considered through a set of scenarios. Thermal units are modeled by variable costs, start-up costs and technical operating constraints, such as: ramp up/down limits and minimum up/down time limits. An efficient mixed-integer linear program is presented to develop the offering strategies of the coordinated production of thermal and wind energy generation, aiming to maximize the expected profit. A case study with data from the Iberian Electricity Market is presented and results are discussed to show the effectiveness of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the self-scheduling problem of a price-taker having wind and thermal power production and assisted by a cyber-physical system for supporting management decisions in a day-ahead electric energy market. The self-scheduling is regarded as a stochastic mixed-integer linear programming problem. Uncertainties on electricity price and wind power are considered through a set of scenarios. Thermal units are modelled by start-up and variable costs, furthermore constraints are considered, such as: ramp up/down and minimum up/down time limits. The stochastic mixed-integer linear programming problem allows a decision support for strategies advantaging from an effective wind and thermal mixed bidding. A case study is presented using data from the Iberian electricity market.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a stochastic mixed-integer linear programming approach for solving the self-scheduling problem of a price-taker thermal and wind power producer taking part in a pool-based electricity market. Uncertainty on electricity price and wind power is considered through a set of scenarios. Thermal units are modelled by variable costs, start-up costs and technical operating constraints, such as: forbidden operating zones, ramp up/down limits and minimum up/down time limits. An efficient mixed-integer linear program is presented to develop the offering strategies of the coordinated production of thermal and wind energy generation, having as a goal the maximization of profit. A case study with data from the Iberian Electricity Market is presented and results are discussed to show the effectiveness of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combinatorial optimization problems are typically tackled by the branch-and-bound paradigm. We propose to learn a variable selection policy for branch-and-bound in mixed-integer linear programming, by imitation learning on a diversified variant of the strong branching expert rule. We encode states as bipartite graphs and parameterize the policy as a graph convolutional neural network. Experiments on a series of synthetic problems demonstrate that our approach produces policies that can improve upon expert-designed branching rules on large problems, and generalize to instances significantly larger than seen during training.