973 resultados para Minimally invasive surgery


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract and they often require a surgical removal. Gastrointestinal stromal tumors can originate from any part of the gastrointestinal tract but gastric location is the most common. In the past the risk of rupture of pseudocapsula and peritoneal dissemination have discouraged surgeons from making a minimally invasive surgical treatment. Recently laparoscopic wedge resection has been proposed. Performance of this mini-invasive technique is however difficult in some gastric location of gastrointestinal stromal tumors, such as iuxta-cardial region. The Authors report and discuss a new technique they used to remove a gastrointestinal stromal tumor located just below the cardia, using a rendez-vous endoscopic and laparoscopic technique.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Uma ancoragem eficiente é um factor de extrema importância em Ortodontia. Perante a relevância deste assunto e sendo ainda um desafio para muitos ortodontistas, este trabalho tem como objetivo realizar uma revisão bibliográfica sobre dispositivos de ancoragem, especificamente mini-implantes e mini-placas, entendendo que os mesmos surgiram como auxiliares importantes no tratamento ortodôntico, com a finalidade de relacionar os tipos, indicações, aplicações clínicas, locais de instalação, vantagens, possíveis complicações na sua utilização e cuidados a serem tomados. Alta versatilidade de aplicação clínica, eliminação de movimentos indesejáveis dos dentes pilares, movimentos precisos, movimentos mais rápidos, redução de custos, processo cirúrgico simples e pouco invasivo, substituição de aparelhos extraorais, tamanho reduzido e capacidade de suportar de imediato forças ortodônticas pesadas, são algumas das vantagens na utilização dos mini-implantes e mini-placas que fazem com que a ancoragem óssea absoluta obtida através do seu uso crie melhores condições na obtenção dos objetivos propostos no tratamento ortodôntico com aparatologia fixa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis describes two separate projects. The first is a theoretical and experimental investigation of surface acoustic wave streaming in microfluidics. The second is the development of a novel acoustic glucose sensor. A separate abstract is given for each here. Optimization of acoustic streaming in microfluidic channels by SAWs Surface Acoustic Waves, (SAWs) actuated on flat piezoelectric substrates constitute a convenient and versatile tool for microfluidic manipulation due to the easy and versatile interfacing with microfluidic droplets and channels. The acoustic streaming effect can be exploited to drive fast streaming and pumping of fluids in microchannels and droplets (Shilton et al. 2014; Schmid et al. 2011), as well as size dependant sorting of particles in centrifugal flows and vortices (Franke et al. 2009; Rogers et al. 2010). Although the theory describing acoustic streaming by SAWs is well understood, very little attention has been paid to the optimisation of SAW streaming by the correct selection of frequency. In this thesis a finite element simulation of the fluid streaming in a microfluidic chamber due to a SAW beam was constructed and verified against micro-PIV measurements of the fluid flow in a fabricated device. It was found that there is an optimum frequency that generates the fastest streaming dependent on the height and width of the chamber. It is hoped this will serve as a design tool for those who want to optimally match SAW frequency with a particular microfluidic design. An acoustic glucose sensor Diabetes mellitus is a disease characterised by an inability to properly regulate blood glucose levels. In order to keep glucose levels under control some diabetics require regular injections of insulin. Continuous monitoring of glucose has been demonstrated to improve the management of diabetes (Zick et al. 2007; Heinemann & DeVries 2014), however there is a low patient uptake of continuous glucose monitoring systems due to the invasive nature of the current technology (Ramchandani et al. 2011). In this thesis a novel way of monitoring glucose levels is proposed which would use ultrasonic waves to ‘read’ a subcutaneous glucose sensitive-implant, which is only minimally invasive. The implant is an acoustic analogy of a Bragg stack with a ‘defect’ layer that acts as the sensing layer. A numerical study was performed on how the physical changes in the sensing layer can be deduced by monitoring the reflection amplitude spectrum of ultrasonic waves reflected from the implant. Coupled modes between the skin and the sensing layer were found to be a potential source of error and drift in the measurement. It was found that by increasing the number of layers in the stack that this could be minimized. A laboratory proof of concept system was developed using a glucose sensitive hydrogel as the sensing layer. It was possible to monitor the changing thickness and speed of sound of the hydrogel due to physiological relevant changes in glucose concentration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2015.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese (doutorado)—Universidade de Brasília, Faculdade de Medicina, Pós-Graduação em Patologia Molecular, 2016.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cardiovascular diseases (CVDs) have reached an epidemic proportion in the US and worldwide with serious consequences in terms of human suffering and economic impact. More than one third of American adults are suffering from CVDs. The total direct and indirect costs of CVDs are more than $500 billion per year. Therefore, there is an urgent need to develop noninvasive diagnostics methods, to design minimally invasive assist devices, and to develop economical and easy-to-use monitoring systems for cardiovascular diseases. In order to achieve these goals, it is necessary to gain a better understanding of the subsystems that constitute the cardiovascular system. The aorta is one of these subsystems whose role in cardiovascular functioning has been underestimated. Traditionally, the aorta and its branches have been viewed as resistive conduits connected to an active pump (left ventricle of the heart). However, this perception fails to explain many observed physiological results. My goal in this thesis is to demonstrate the subtle but important role of the aorta as a system, with focus on the wave dynamics in the aorta.

The operation of a healthy heart is based on an optimized balance between its pumping characteristics and the hemodynamics of the aorta and vascular branches. The delicate balance between the aorta and heart can be impaired due to aging, smoking, or disease. The heart generates pulsatile flow that produces pressure and flow waves as it enters into the compliant aorta. These aortic waves propagate and reflect from reflection sites (bifurcations and tapering). They can act constructively and assist the blood circulation. However, they may act destructively, promoting diseases or initiating sudden cardiac death. These waves also carry information about the diseases of the heart, vascular disease, and coupling of heart and aorta. In order to elucidate the role of the aorta as a dynamic system, the interplay between the dominant wave dynamic parameters is investigated in this study. These parameters are heart rate, aortic compliance (wave speed), and locations of reflection sites. Both computational and experimental approaches have been used in this research. In some cases, the results are further explained using theoretical models.

The main findings of this study are as follows: (i) developing a physiologically realistic outflow boundary condition for blood flow modeling in a compliant vasculature; (ii) demonstrating that pulse pressure as a single index cannot predict the true level of pulsatile workload on the left ventricle; (iii) proving that there is an optimum heart rate in which the pulsatile workload of the heart is minimized and that the optimum heart rate shifts to a higher value as aortic rigidity increases; (iv) introducing a simple bio-inspired device for correction and optimization of aortic wave reflection that reduces the workload on the heart; (v) deriving a non-dimensional number that can predict the optimum wave dynamic state in a mammalian cardiovascular system; (vi) demonstrating that waves can create a pumping effect in the aorta; (vii) introducing a system parameter and a new medical index, Intrinsic Frequency, that can be used for noninvasive diagnosis of heart and vascular diseases; and (viii) proposing a new medical hypothesis for sudden cardiac death in young athletes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis presents an investigation on endoscopic optical coherence tomography (OCT). As a noninvasive imaging modality, OCT emerges as an increasingly important diagnostic tool for many clinical applications. Despite of many of its merits, such as high resolution and depth resolvability, a major limitation is the relatively shallow penetration depth in tissue (about 2∼3 mm). This is mainly due to tissue scattering and absorption. To overcome this limitation, people have been developing many different endoscopic OCT systems. By utilizing a minimally invasive endoscope, the OCT probing beam can be brought to the close vicinity of the tissue of interest and bypass the scattering of intervening tissues so that it can collect the reflected light signal from desired depth and provide a clear image representing the physiological structure of the region, which can not be disclosed by traditional OCT. In this thesis, three endoscope designs have been studied. While they rely on vastly different principles, they all converge to solve this long-standing problem.

A hand-held endoscope with manual scanning is first explored. When a user is holding a hand- held endoscope to examine samples, the movement of the device provides a natural scanning. We proposed and implemented an optical tracking system to estimate and record the trajectory of the device. By registering the OCT axial scan with the spatial information obtained from the tracking system, one can use this system to simply ‘paint’ a desired volume and get any arbitrary scanning pattern by manually waving the endoscope over the region of interest. The accuracy of the tracking system was measured to be about 10 microns, which is comparable to the lateral resolution of most OCT system. Targeted phantom sample and biological samples were manually scanned and the reconstructed images verified the method.

Next, we investigated a mechanical way to steer the beam in an OCT endoscope, which is termed as Paired-angle-rotation scanning (PARS). This concept was proposed by my colleague and we further developed this technology by enhancing the longevity of the device, reducing the diameter of the probe, and shrinking down the form factor of the hand-piece. Several families of probes have been designed and fabricated with various optical performances. They have been applied to different applications, including the collector channel examination for glaucoma stent implantation, and vitreous remnant detection during live animal vitrectomy.

Lastly a novel non-moving scanning method has been devised. This approach is based on the EO effect of a KTN crystal. With Ohmic contact of the electrodes, the KTN crystal can exhibit a special mode of EO effect, termed as space-charge-controlled electro-optic effect, where the carrier electron will be injected into the material via the Ohmic contact. By applying a high voltage across the material, a linear phase profile can be built under this mode, which in turn deflects the light beam passing through. We constructed a relay telescope to adapt the KTN deflector into a bench top OCT scanning system. One of major technical challenges for this system is the strong chromatic dispersion of KTN crystal within the wavelength band of OCT system. We investigated its impact on the acquired OCT images and proposed a new approach to estimate and compensate the actual dispersion. Comparing with traditional methods, the new method is more computational efficient and accurate. Some biological samples were scanned by this KTN based system. The acquired images justified the feasibility of the usage of this system into a endoscopy setting. My research above all aims to provide solutions to implement an OCT endoscope. As technology evolves from manual, to mechanical, and to electrical approaches, different solutions are presented. Since all have their own advantages and disadvantages, one has to determine the actual requirements and select the best fit for a specific application.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnesium alloys have been widely explored as potential biomaterials, but several limitations to using these materials have prevented their widespread use, such as uncontrollable degradation kinetics which alter their mechanical properties. In an attempt to further the applicability of magnesium and its alloys for biomedical purposes, two novel magnesium alloys Mg-Zn-Cu and Mg-Zn-Se were developed with the expectation of improving upon the unfavorable qualities shown by similar magnesium based materials that have previously been explored. The overall performance of these novel magnesium alloys has been assessesed in three distinct phases of research: 1) analysing the mechanical properties of the as-cast magnesium alloys, 2) evaluating the biocompatibility of the as-cast magnesium alloys through the use of in-vitro cellular studies, and 3) profiling the degradation kinetics of the as-cast magnesium alloys through the use of electrochemical potentiodynamic polarization techqnique as well as gravimetric weight-loss methods. As compared to currently available shape memory alloys and degradable as-cast alloys, these experimental alloys possess superior as-cast mechanical properties with elongation at failure values of 12% and 13% for the Mg-Zn-Se and Mg-Zn-Se alloys, respectively. This is substantially higher than other as-cast magnesium alloys that have elongation at failure values that range from 7-10%. Biocompatibility tests revealed that both the Mg-Zn-Se and Mg-Zn-Cu alloys exhibit low cytotoxicity levels which are suitable for biomaterial applications. Gravimetric and electrochemical testing was indicative of the weight loss and initial corrosion behavior of the alloys once immersed within a simulated body fluid. The development of these novel as-cast magnesium alloys provide an advancement to the field of degradable metallic materials, while experimental results indicate their potential as cost-effective medical devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oscillometric blood pressure (BP) monitors are currently used to diagnose hypertension both in home and clinical settings. These monitors take BP measurements once every 15 minutes over a 24 hour period and provide a reliable and accurate system that is minimally invasive. Although intermittent cuff measurements have proven to be a good indicator of BP, a continuous BP monitor is highly desirable for the diagnosis of hypertension and other cardiac diseases. However, no such devices currently exist. A novel algorithm has been developed based on the Pulse Transit Time (PTT) method, which would allow non-invasive and continuous BP measurement. PTT is defined as the time it takes the BP wave to propagate from the heart to a specified point on the body. After an initial BP measurement, PTT algorithms can track BP over short periods of time, known as calibration intervals. After this time has elapsed, a new BP measurement is required to recalibrate the algorithm. Using the PhysioNet database as a basis, the new algorithm was developed and tested using 15 patients, each tested 3 times over a period of 30 minutes. The predicted BP of the algorithm was compared to the arterial BP of each patient. It has been established that this new algorithm is capable of tracking BP over 12 minutes without the need for recalibration, using the BHS standard, a 100% improvement over what has been previously identified. The algorithm was incorporated into a new system based on its requirements and was tested using three volunteers. The results mirrored those previously observed, providing accurate BP measurements when a 12 minute calibration interval was used. This new system provides a significant improvement to the existing method allowing BP to be monitored continuously and non-invasively, on a beat-to-beat basis over 24 hours, adding major clinical and diagnostic value.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introducción: El Ductus arterioso persistente (DAP), es uno de los defectos congénitos cardiacos más comunes, requiere manejo farmacológico y/o quirúrgico; presenta complicaciones hemodinámicas, respiratorias y muerte. Los medicamentos de elección para su manejo son indometacina e ibuprofeno, pero su costo y accesibilidad llevo al uso de diclofenaco como alternativa de manejo en algunos hospitales. Objetivo: Comparar respuesta al tratamiento con diclofenaco vs ibuprofeno en cierre de DAP. Materiales y Métodos: Estudio observacional analítico retrospectivo, que compara los resultados obtenidos al usar Diclofenaco e Ibuprofeno para el cierre del DAP en recién nacidos pretérmino. Se recolecto información de pacientes hospitalizados en la Unidad Neonatal de un Hospital II nivel de Bogotá. Se revisaron las historias clínicas de pacientes de edad gestacional entre 24 y 36 semanas por Ballard con los criterios para diagnóstico de DAP y recibieron tratamiento farmacológico con una de las siguientes opciones: Ibuprofeno 10 mg/Kg dosis inicial después 5mg/Kg a las 24 48 horas, o Diclofenaco 0.2 mg/Kg dosis cada 12 horas tres dosis. Se comparó el Diclofenaco y el Ibuprofeno para el tratamiento farmacológico de DAP en recién nacidos prematuros. Resultados: Fueron evaluados 103 pacientes, el diagnóstico de DAP se realizó con ecocardiograma transtorácico, el 66.6 % de los pacientes presentó cierre farmacológico con Diclofenaco y 69 % con Ibuprofeno, La mortalidad fue de 17.65 % con Diclofenaco y 11.54 % con ibuprofeno; en ambos casos asociadas a la prematurez. Conclusiones: El éxito farmacológico fue similar en ambos grupos, el diclofenaco es una alternativa interesante cuando la terapia convencional no esté disponible.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Context Percutaneous vertebroplasty (PVP) is a minimally invasive surgical procedure and is frequently performed in humans who need surgical treatment of vertebral fractures. PVP involves cement injection into the vertebral body, thereby providing rapid and significant pain relief. Purpose The testing of novel biomaterials depends on suitable animal models. The aim of this study was to develop a reproducible and safe model of PVP in sheep. Study Design This study used ex vivo and in vivo large animal model study (Merino sheep). Methods Ex vivo vertebroplasty was performed through a bilateral modified parapedicular access in 24 ovine lumbar hemivertebrae, divided into four groups (n=6). Cerament (Bone Support, Lund, Sweden) was the control material. In the experimental group, a novel composite was tested—Spine-Ghost—which consisted of an alpha-calcium sulfate matrix enriched with micrometric particles of mesoporous bioactive glass. All vertebrae were assessed by micro-computed tomography (micro-CT) and underwent mechanical testing. For the in vivo study, 16 sheep were randomly allocated into control and experimental groups (n=8), and underwent PVP using the same bone cements. All vertebrae were assessed postmortem by micro-CT, histology, and reverse transcription-polymerase chain reaction (rt-PCR). This work has been supported by the European Commission under the 7th Framework Programme for collaborative projects (600,000–650,000 USD). Results In the ex vivo model, the average defect volume was 1,275.46±219.29 mm3. Adequate defect filling with cement was observed. No mechanical failure was observed under loads which were higher than physiological. In the in vivo study, cardiorespiratory distress was observed in two animals, and one sheep presented mild neurologic deficits in the hind limbs before recovering. Conclusions The model of PVP is considered suitable for preclinical in vivo studies, mimicking clinical application. All sheep recovered and completed a 6-month implantation period. There was no evidence of cement leakage into the vertebral foramen in the postmortem examination.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La stenosi valvolare aortica è la più frequente patologia valvolare cardiaca nei paesi sviluppati come diretta conseguenza dell’aumentata aspettativa di vita. In Europa si stima che il numero di soggetti sintomatici per stenosi valvolare aortica aumenterà da 1.3 milioni nel 2025 a 2.1 milioni in 2050. Di conseguenza la stenosi aortica ha e avrà un forte impatto sulla salute pubblica e sui costi che ne determina, poiché spesso associata a un declino funzionale dei pazienti ed aumentata incidenza di ospedalizzazione. D’altra parte è noto che la stenosi valvolare aortica severa non trattata si associa a prognosi infausta con una sopravvivenza del 50% a 2 anni dall’insorgenza dei sintomi e del 20% a 5 anni. Ad oggi non esiste una terapia medica efficace per la stenosi valvolare aortica in quanto andando a costituire un’ostruzione meccanica, resta di competenza del cardiochirurgo o del cardiologo interventista. La sostituzione valvolare aortica, sia essa chirurgica o percutanea, resta pertanto il solo trattamento definitivo per la stenosi valvolare aortica. Nel tempo il rischio operatorio è estremamente diminuito e i vantaggi in termini di miglioramento della qualità di vita sono evidenti. Questo progetto di ricerca prevede pertanto un’analisi delle più recenti tecnologie per il trattamento chirurgico della stenosi valvolare aortica a partire dalla tipologia di approccio chirurgico, se mini-invasivo o tradizionale, fino all’utilizzo delle più recenti protesi biologiche sutureless studiandone i vantaggi, svantaggi e risultati. Prima ancora, tuttavia, saranno analizzati i meccanismi di biologia molecolare alla base dell’eziologia della stenosi aortica al fine di poter identificare precocemente i pazienti, di prevedere l’andamento della patologia e forse, in futuro, anche di ipotizzare una terapia farmacologica mirata.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wearable biosensors are attracting interest due to their potential to provide continuous, real-time physiological information via dynamic, non-invasive measurements of biochemical markers in biofluids, such as interstitial fluid (ISF). One notable example of their applications is for glycemic monitoring in diabetic patients, which is typically carried out either by direct measurement of blood glucose via finger pricking or by wearable sensors that can continuously monitor glucose in ISF by sampling it from below the skin with a microneedle. In this context, the development of a new and minimally invasive multisensing tattoo-based platform for the monitoring of glucose and other analytes in ISF extracted through reverse iontophoresis in proposed by the GLUCOMFORT project. This elaborate describes the in-vitro development of flexible electrochemical sensors based on inkjet-printed PEDOT:PSS and metal inks that are capable of determining glucose and chloride at biologically relevant concentrations, making them good candidates for application in the GLUCOMFORT platform. In order to make PEDOT:PSS sensitive to glucose at micromolar concentrations, a biocompatible functionalization based on immobilized glucose oxidase and electrodeposited platinum was developed. This functionalization was successfully applied to bulk and flexible amperometric devices, the design of which was also optimized. Using the same strategy, flexible organic electrochemical transistors (OECTs) for glucose sensing were also made and successfully tested. For the sensing of chloride ions, an organic charge-modulated field-effect transistor (OCMFET) featuring a silver/silver chloride modified floating gate electrode was developed and tested.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: To verify whether preoperative respiratory muscle strength and ventilometric parameters, among other clinically relevant factors, are associated with the need for prolonged invasive mechanical ventilation (PIMV) due to cardiorespiratory complications following heart valve surgery. Methods: Demographics, preoperative ventilometric and manometric data, and the hospital course of 171 patients, who had undergone heart valve surgery at Hospital das Clinicas da Faculdade de Medicina de Ribeirao Preto, were prospectively collected and subjected to univariate analysis for identifying the risk factors for PIMV. Results: The hospital mortality was 7%. About 6% of the patients, who had undergone heart valve surgery required PIMV because of postoperative cardiorespiratory dysfunction. Their hospital mortality was 60% (vs 4%, p < 0.001). Univariate analysis revealed that preoperative respiratory muscle dysfunction, characterized by maximal inspiratory and expiratory pressure below 70% of the predicted values combined with respiratory rate above 15 rpm during ventilometry, was associated with postoperative PIMV (p = 0.030, odds ratio: 50, 95% confidence interval (CI): 1.2-18). Postoperative PIMV was also associated with: (1) body mass index (BMI) < 18.5 (odds ratio: 7.2, 95% CI: 1.5-32), (2) body weight < 50 kg (odds ratio: 6.5, 95% CI: 1.6-25), (3) valve operation due to acute endocarditis (odds ratio: 5.5, 95% CI: 0.98-30), and (4) concomitant operation for mitral and tricuspid valve dysfunction (p = 0.047, odds ratio: 5.0, 95% CI: 1.1-22). Conclusion: Our results have demonstrated that respiratory muscle dysfunction, among other clinical factors, is associated with the need for PIMV due to cardiovascular or pulmonary dysfunction after heart valve surgery. (C) 2010 European Association for Cardio-Thoracic Surgery. Published by Elsevier B. V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJETIVE: To assess the hemodynamic profile of cardiac surgery patients with circulatory instability in the early postoperative period (POP). METHODS: Over a two-year period, 306 patients underwent cardiac surgery. Thirty had hemodynamic instability in the early POP and were monitored with the Swan-Ganz catheter. The following parameters were evaluated: cardiac index (CI), systemic and pulmonary vascular resistance, pulmonary shunt, central venous pressure (CVP), pulmonary capillary wedge pressure (PCWP), oxygen delivery and consumption, use of vasoactive drugs and of circulatory support. RESULTS: Twenty patients had low cardiac index (CI), and 10 had normal or high CI. Systemic vascular resistance was decreased in 11 patients. There was no correlation between oxygen delivery (DO2) and consumption (VO2), p=0.42, and no correlation between CVP and PCWP, p=0.065. Pulmonary vascular resistance was decreased in 15 patients and the pulmonary shunt was increased in 19. Two patients with CI < 2L/min/m² received circulatory support. CONCLUSION: Patients in the POP of cardiac surgery frequently have a mixed shock due to the systemic inflammatory response syndrome (SIRS). Therefore, invasive hemodynamic monitoring is useful in handling blood volume, choice of vasoactive drugs, and indication for circulatory support.