960 resultados para Maximum-entropy selection criterion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We assess the performance of Gaussianity tests, namely the Anscombe-Glynn, Lilliefors, Cramér-von Mises, and Giannakis-Tsatsanis (G-T), with the purpose of detecting narrowband and wideband interference in GNSS signals. Simulations have shown that the G-T test outperforms the others being suitable as a benchmark for comparison with different types of interference detection algorithms. © 2014 EURASIP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of resources systems selection takes an important part in Distributed/Agile/Virtual Enterprises (D/A/V Es) integration. However, the resources systems selection is still a difficult matter to solve in a D/A/VE, as it is pointed out in this paper. Globally, we can say that the selection problem has been equated from different aspects, originating different kinds of models/algorithms to solve it. In order to assist the development of a web prototype tool (broker tool), intelligent and flexible, that integrates all the selection model activities and tools, and with the capacity to adequate to each D/A/V E project or instance (this is the major goal of our final project), we intend in this paper to show: a formulation of a kind of resources selection problem and the limitations of the algorithms proposed to solve it. We formulate a particular case of the problem as an integer programming, which is solved using simplex and branch and bound algorithms, and identify their performance limitations (in terms of processing time) based on simulation results. These limitations depend on the number of processing tasks and on the number of pre-selected resources per processing tasks, defining the domain of applicability of the algorithms for the problem studied. The limitations detected open the necessity of the application of other kind of algorithms (approximate solution algorithms) outside the domain of applicability founded for the algorithms simulated. However, for a broker tool it is very important the knowledge of algorithms limitations, in order to, based on problem features, develop and select the most suitable algorithm that guarantees a good performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the adoption of entropy for analyzing the dynamics of a multiple independent particles system. Several entropy definitions and types of particle dynamics with integer and fractional behavior are studied. The results reveal the adequacy of the entropy concept in the analysis of complex dynamical systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When considering time series data of variables describing agent interactions in social neurobiological systems, measures of regularity can provide a global understanding of such system behaviors. Approximate entropy (ApEn) was introduced as a nonlinear measure to assess the complexity of a system behavior by quantifying the regularity of the generated time series. However, ApEn is not reliable when assessing and comparing the regularity of data series with short or inconsistent lengths, which often occur in studies of social neurobiological systems, particularly in dyadic human movement systems. Here, the authors present two normalized, nonmodified measures of regularity derived from the original ApEn, which are less dependent on time series length. The validity of the suggested measures was tested in well-established series (random and sine) prior to their empirical application, describing the dyadic behavior of athletes in team games. The authors consider one of the ApEn normalized measures to generate the 95th percentile envelopes that can be used to test whether a particular social neurobiological system is highly complex (i.e., generates highly unpredictable time series). Results demonstrated that suggested measures may be considered as valid instruments for measuring and comparing complexity in systems that produce time series with inconsistent lengths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the field of appearance-based robot localization, the mainstream approach uses a quantized representation of local image features. An alternative strategy is the exploitation of raw feature descriptors, thus avoiding approximations due to quantization. In this work, the quantized and non-quantized representations are compared with respect to their discriminativity, in the context of the robot global localization problem. Having demonstrated the advantages of the non-quantized representation, the paper proposes mechanisms to reduce the computational burden this approach would carry, when applied in its simplest form. This reduction is achieved through a hierarchical strategy which gradually discards candidate locations and by exploring two simplifying assumptions about the training data. The potential of the non-quantized representation is exploited by resorting to the entropy-discriminativity relation. The idea behind this approach is that the non-quantized representation facilitates the assessment of the distinctiveness of features, through the entropy measure. Building on this finding, the robustness of the localization system is enhanced by modulating the importance of features according to the entropy measure. Experimental results support the effectiveness of this approach, as well as the validity of the proposed computation reduction methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many learning problems require handling high dimensional datasets with a relatively small number of instances. Learning algorithms are thus confronted with the curse of dimensionality, and need to address it in order to be effective. Examples of these types of data include the bag-of-words representation in text classification problems and gene expression data for tumor detection/classification. Usually, among the high number of features characterizing the instances, many may be irrelevant (or even detrimental) for the learning tasks. It is thus clear that there is a need for adequate techniques for feature representation, reduction, and selection, to improve both the classification accuracy and the memory requirements. In this paper, we propose combined unsupervised feature discretization and feature selection techniques, suitable for medium and high-dimensional datasets. The experimental results on several standard datasets, with both sparse and dense features, show the efficiency of the proposed techniques as well as improvements over previous related techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers an international trade under Bertrand model with differentiated products and with unknown production costs. The home government imposes a specific import tariff per unit of imports from the foreign firm. We prove that this tariff is decreasing in the expected production costs of the foreign firm and increasing in the production costs of the home firm. Furthermore, it is increasing in the degree of product substitutability. We also show that an increase in the tariff results in both firms increasing their prices, an increase in both expected sales and expected profits for the home firm, and a decrease in both expected sales and expected profits for the foreign firm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feature selection is a central problem in machine learning and pattern recognition. On large datasets (in terms of dimension and/or number of instances), using search-based or wrapper techniques can be cornputationally prohibitive. Moreover, many filter methods based on relevance/redundancy assessment also take a prohibitively long time on high-dimensional. datasets. In this paper, we propose efficient unsupervised and supervised feature selection/ranking filters for high-dimensional datasets. These methods use low-complexity relevance and redundancy criteria, applicable to supervised, semi-supervised, and unsupervised learning, being able to act as pre-processors for computationally intensive methods to focus their attention on smaller subsets of promising features. The experimental results, with up to 10(5) features, show the time efficiency of our methods, with lower generalization error than state-of-the-art techniques, while being dramatically simpler and faster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Published also at Lecture Notes in Engineering and Computer Science

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a case study of heat exchanger network (HEN) retrofit with the objective to reduce the utilities consumption in a biodiesel production process. Pinch analysis studies allow determining the minimum duty utilities as well the maximum of heat recovery. The existence of heat exchangers for heat recovery already running in the process causes a serious restriction for the implementation of grassroot HEN design based on pinch studies. Maintaining the existing HEN, a set of alternatives with additional heat exchangers was created and analysed using some industrial advice and selection criteria. The final proposed solution allows to increase the actual 18 % of recovery heat of the all heating needs of the process to 23 %, with an estimated annual saving in hot utility of 35 k(sic)/y.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density-dependent effects, both positive or negative, can have an important impact on the population dynamics of species by modifying their population per-capita growth rates. An important type of such density-dependent factors is given by the so-called Allee effects, widely studied in theoretical and field population biology. In this study, we analyze two discrete single population models with overcompensating density-dependence and Allee effects due to predator saturation and mating limitation using symbolic dynamics theory. We focus on the scenarios of persistence and bistability, in which the species dynamics can be chaotic. For the chaotic regimes, we compute the topological entropy as well as the Lyapunov exponent under ecological key parameters and different initial conditions. We also provide co-dimension two bifurcation diagrams for both systems computing the periods of the orbits, also characterizing the period-ordering routes toward the boundary crisis responsible for species extinction via transient chaos. Our results show that the topological entropy increases as we approach to the parametric regions involving transient chaos, being maximum when the full shift R(L)(infinity) occurs, and the system enters into the essential extinction regime. Finally, we characterize analytically, using a complex variable approach, and numerically the inverse square-root scaling law arising in the vicinity of a saddle-node bifurcation responsible for the extinction scenario in the two studied models. The results are discussed in the context of species fragility under differential Allee effects. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of catalytic networks have been widely studied over the last decades because of their implications in several fields like prebiotic evolution, virology, neural networks, immunology or ecology. One of the most studied mathematical bodies for catalytic networks was initially formulated in the context of prebiotic evolution, by means of the hypercycle theory. The hypercycle is a set of self-replicating species able to catalyze other replicator species within a cyclic architecture. Hypercyclic organization might arise from a quasispecies as a way to increase the informational containt surpassing the so-called error threshold. The catalytic coupling between replicators makes all the species to behave like a single and coherent evolutionary multimolecular unit. The inherent nonlinearities of catalytic interactions are responsible for the emergence of several types of dynamics, among them, chaos. In this article we begin with a brief review of the hypercycle theory focusing on its evolutionary implications as well as on different dynamics associated to different types of small catalytic networks. Then we study the properties of chaotic hypercycles with error-prone replication with symbolic dynamics theory, characterizing, by means of the theory of topological Markov chains, the topological entropy and the periods of the orbits of unimodal-like iterated maps obtained from the strange attractor. We will focus our study on some key parameters responsible for the structure of the catalytic network: mutation rates, autocatalytic and cross-catalytic interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A procura de padrões nos dados de modo a formar grupos é conhecida como aglomeração de dados ou clustering, sendo uma das tarefas mais realizadas em mineração de dados e reconhecimento de padrões. Nesta dissertação é abordado o conceito de entropia e são usados algoritmos com critérios entrópicos para fazer clustering em dados biomédicos. O uso da entropia para efetuar clustering é relativamente recente e surge numa tentativa da utilização da capacidade que a entropia possui de extrair da distribuição dos dados informação de ordem superior, para usá-la como o critério na formação de grupos (clusters) ou então para complementar/melhorar algoritmos existentes, numa busca de obtenção de melhores resultados. Alguns trabalhos envolvendo o uso de algoritmos baseados em critérios entrópicos demonstraram resultados positivos na análise de dados reais. Neste trabalho, exploraram-se alguns algoritmos baseados em critérios entrópicos e a sua aplicabilidade a dados biomédicos, numa tentativa de avaliar a adequação destes algoritmos a este tipo de dados. Os resultados dos algoritmos testados são comparados com os obtidos por outros algoritmos mais “convencionais" como o k-médias, os algoritmos de spectral clustering e um algoritmo baseado em densidade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis for the Degree of Master of Science in Biotechnology Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este documento apresenta o trabalho desenvolvido no âmbito da disciplina de “Dissertação/Projeto/Estágio”, do 2º ano do Mestrado em Energias Sustentáveis. O crescente consumo energético das sociedades desenvolvidas e emergentes, associado ao consequente aumento dos custos de energia e dos danos ambientais resultantes, promove o desenvolvimento de novas formas de produção de energia, as quais têm como prioridade a sua obtenção ao menor custo possível e com reduzidos impactos ambientais. De modo a poupar os recursos naturais e reduzir a emissão com gases de efeito de estufa, é necessária a diminuição do consumo de energia produzida a partir de combustíveis fósseis. Assim, devem ser criadas alternativas para um futuro sustentável, onde as fontes renováveis de energia assumam um papel fundamental. Neste sentido, a produção de energia elétrica, através de sistemas solares fotovoltaicos, surge como uma das soluções. A presente dissertação tem como principal objetivo a realização do dimensionamento de uma central de miniprodução fotovoltaica, com ligação à rede elétrica, em uma exploração agrícola direcionada à indústria de laticínios, e o seu respetivo estudo de viabilidade económica. A exploração agrícola, que serve de objeto de estudo, está localizada na Ilha Graciosa, Açores, sendo a potência máxima a injetar na Rede Elétrica de Serviço Público, pela central de miniprodução, de 10 kW. Para o dimensionamento foi utilizado um software apropriado e reconhecido na área da produção de energia elétrica através de sistemas fotovoltaicos – o PVsyst –, compreendendo as seguintes etapas: a) definição das caraterísticas do local e do projeto; b) seleção dos módulos fotovoltaicos; c) seleção do inversor; d) definição da potência de ligação à rede elétrica da unidade de miniprodução. Posteriormente, foram estudadas diferentes hipóteses de sistemas fotovoltaicos, que se distinguem na opção de estrutura de fixação utilizada: dois sistemas fixos e dois com eixo incorporado. No estudo de viabilidade económica foram realizadas duas análises distintas a cada um dos sistemas fotovoltaicos considerados no dimensionamento, nomeadamente: uma análise em regime remuneratório bonificado e uma análise em regime remuneratório geral. Os resultados obtidos nos indicadores económicos do estudo de viabilidade económica realizado, serviram de apoio à decisão pelo sistema fotovoltaico mais favorável ao investimento. Conclui-se que o sistema fotovoltaico com inclinação adicional é a opção mais vantajosa em ambos os regimes remuneratórios analisados. Comprova-se, assim, que o sistema fotovoltaico com maior valor de produção de energia elétrica anual, que corresponde ao sistema fotovoltaico de dois eixos, não é a opção com maior rentabilidade em termos económicos, isto porque a remuneração proveniente da sua produção excedente não é suficiente para colmatar o valor do investimento mais acentuado de modo a obter indicadores económicos mais favoráveis, que os do sistema fotovoltaico com inclinação adicional. De acordo com o estudo de viabilidade económica efetuado independentemente do sistema fotovoltaico que seja adotado, é recuperado o investimento realizado, sendo a remuneração efetiva superior à que foi exigida. Assim, mesmo tendo em consideração o risco associado, comprova-se que todos os sistemas fotovoltaicos, em qualquer dos regimes remuneratórios, correspondem a investimentos rentáveis.