892 resultados para Matrix Power Function


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extracellular matrix (ECM) composition has an important role in determining airway structure. We postulated that ECM lung composition of chronic obstructive pulmonary disease (COPD) patients differs from that observed in smoking and nonsmoking subjects without airflow obstruction. We determined the fractional areas of elastic fibres, type-I, -III and -IV collagen, versican, decorin, biglycan, lumican, fibronectin and tenascin in different compartments of the large and small airways and lung parenchyma in 26 COPD patients, 26 smokers without COPD and 16 nonsmoking control subjects. The fractional area of elastic fibres was higher in non-obstructed smokers than in COPD and nonsmoking controls, in all lung compartments. Type-I collagen fractional area was lower in the large and small airways of COPD patients and in the small airways of non-obstructed smokers than in nonsmokers. Compared with nonsmokers, COPD patients had lower versican fractional area in the parenchyma, higher fibronectin fractional area in small airways and higher tenascin fractional area in large and small airways compartments. In COPD patients, significant correlations were found between elastic fibres and fibronectin and lung function parameters. Alterations of the major ECM components are widespread in all lung compartments of patients with COPD and may contribute to persistent airflow obstruction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied, via laser absorption spectroscopy, the velocity distribution of Li-7 atoms released from cryogenic matrices of solid neon or molecular hydrogen. The Li atoms are implanted into the Ne or H-2 matrices - grown onto a sapphire substrate - by laser ablation of a solid Li or LiH precursor. A heat pulse is then applied to the sapphire substrate sublimating the matrix together with the isolated atoms. With a NiCr film resistor deposited directly onto the sapphire substrate we are able to transfer high instantaneous power to the matrix, thus reaching a fast sublimation regime. In this regime the Li atoms can get entrained in the released matrix gas, and we were also able to achieve matrix sublimation times down to 10 mu s for both H-2 or Ne matrix, enabling us to proceed with the trapping of the species of our interest such as atomic hydrogen, lithium, and molecules. The sublimation of the H-2 matrix, with its large center-of-mass velocity, provides evidence for a new regime of one-dimensional thermalization. The laser ablated Li seems to penetrate the H-2 matrix deeper than it does in Ne. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704125]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes a computational tool to assist power system engineers in the field tuning of power system stabilizers (PSSs) and Automatic Voltage Regulators (AVRs). The outcome of this tool is a range of gain values for theses controllers within which there is a theoretical guarantee of stability for the closed-loop system. This range is given as a set of limit values for the static gains of the controllers of interest, in such a way that the engineer responsible for the field tuning of PSSs and/or AVRs can be confident with respect to system stability when adjusting the corresponding static gains within this range. This feature of the proposed tool is highly desirable from a practical viewpoint, since the PSS and AVR commissioning stage always involve some readjustment of the controller gains to account for the differences between the nominal model and the actual behavior of the system. By capturing these differences as uncertainties in the model, this computational tool is able to guarantee stability for the whole uncertain model using an approach based on linear matrix inequalities. It is also important to remark that the tool proposed in this paper can also be applied to other types of parameters of either PSSs or Power Oscillation Dampers, as well as other types of controllers (such as speed governors, for example). To show its effectiveness, applications of the proposed tool to two benchmarks for small signal stability studies are presented at the end of this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tantalum coatings are of particular interest today as promising candidates to replace potentially hazardous electrodeposited chromium coatings for tribological and corrosion resistant applications, such as the internal lining on large-caliber gun barrels. Tantalum coatings have two crystalline phases, α-Ta (body-centered-cubic) and β-Ta (metastable tetragonal) that exhibit relatively different properties. Alpha-Ta is typically preferred for wear and corrosion resistant applications and unfortunately, is very difficult to deposit without the assistance of substrate heating or post-annealing treatments. Furthermore, there is no general consensus on the mechanism which causes α or β to form or if there is a phase transition or transformation from β → α during coating deposition. In this study, modulated pulsed power (MPP) magnetron sputtering was used to deposit tantalum coatings with thicknesses between 2 and 20 μm without external substrate heating. The MPP Ta coatings showed good adhesion and low residual stress. This study shows there is an abrupt β → α phase transition when the coating is 5–7 μm thick and not a total phase transformation. Thermocouple measurements reveal substrate temperature increases as a function of deposition time until reaching a saturation temperature of ~ 388 °C. The importance of substrate temperature evolution on the β → α phase transition is also explained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is special interest in the incorporation of metallic nanoparticles in a surrounding dielectric matrix for obtaining composites with desirable characteristics such as for surface plasmon resonance, which can be used in photonics and sensing, and controlled surface electrical conductivity. We investigated nanocomposites produced through metallic ion implantation in insulating substrate, where the implanted metal self-assembles into nanoparticles. During the implantation, the excess of metal atom concentration above the solubility limit leads to nucleation and growth of metal nanoparticles, driven by the temperature and temperature gradients within the implanted sample including the beam-induced thermal characteristics. The nanoparticles nucleate near the maximum of the implantation depth profile (projected range), that can be estimated by computer simulation using the TRIDYN. This is a Monte Carlo simulation program based on the TRIM (Transport and Range of Ions in Matter) code that takes into account compositional changes in the substrate due to two factors: previously implanted dopant atoms, and sputtering of the substrate surface. Our study suggests that the nanoparticles form a bidimentional array buried few nanometers below the substrate surface. More specifically we have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. Transmission electron microscopy of the implanted samples showed the metallic nanoparticles formed in the insulating matrix. The nanocomposites were characterized by measuring the resistivity of the composite layer as function of the dose implanted. These experimental results were compared with a model based on percolation theory, in which electron transport through the composite is explained by conduction through a random resistor network formed by the metallic nanoparticles. Excellent agreement was found between the experimental results and the predictions of the theory. It was possible to conclude, in all cases, that the conductivity process is due only to percolation (when the conducting elements are in geometric contact) and that the contribution from tunneling conduction is negligible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hadron therapy is a promising technique to treat deep-seated tumors. For an accurate treatment planning, the energy deposition in the soft and hard human tissue must be well known. Water has been usually employed as a phantom of soft tissues, but other biomaterials, such as hydroxyapatite (HAp), used as bone substitute, are also relevant as a phantom for hard tissues. The stopping power of HAp for H+ and He+ beams has been studied experimentally and theoretically. The measurements have been done using the Rutherford backscattering technique in an energy range of 450-2000 keV for H+ and of 400-5000 keV for He+ projectiles. The theoretical calculations are based in the dielectric formulation together with the MELF-GOS (Mermin Energy-Loss Function – Generalized Oscillator Strengths) method [1] to describe the target excitation spectrum. A quite good agreement between the experimental data and the theoretical results has been found. The depth dose profile of H+ and He+ ion beams in HAp has been simulated by the SEICS (Simulation of Energetic Ions and Clusters through Solids) code [2], which incorporates the electronic stopping force due to the energy loss by collisions with the target electrons, including fluctuations due to the energy-loss straggling, the multiple elastic scattering with the target nuclei, with their corresponding nuclear energy loss, and the dynamical charge-exchange processes in the projectile charge state. The energy deposition by H+ and He+ as a function of the depth are compared, at several projectile energies, for HAp and liquid water, showing important differences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] The principal aim of this investigation was to determine the influence of blood haemoglobin concentration ([Hb]) on maximal exercise capacity and maximal O(2) consumption (V(O(2),max)) in healthy subjects acclimatised to high altitude. Secondarily, we examined the effects of [Hb] on the regulation of cardiac output (CO), blood pressure and muscular blood flow (LBF) during exercise. Eight Danish lowlanders (three females and five males; 24 +/- 0.6 years, mean +/- S.E.M.) performed submaximal and maximal exercise on a cycle ergometer after 9 weeks at an altitude of 5260 m (Mt Chacaltaya, Bolivia). This was done first with the high [Hb] resulting from acclimatisation and again 2-4 days later, 1 h after isovolaemic haemodilution with Dextran 70 to near sea level [Hb]. After measurements at maximal exercise while breathing air at each [Hb], subjects were switched to hyperoxia (55 % O(2) in N(2)) and the measurements were repeated, increasing the work rate as tolerated. Hyperoxia increased maximal power output and leg V(O(2),max), showing that breathing ambient air at 5260 m, V(O(2),max) is limited by the availability of O(2) rather than by muscular oxidative capacity. Altitude increased [Hb] by 36 % from 136 +/- 5 to 185 +/- 5 g l(-1) (P < 0.001), while haemodilution (replacing 1 l of blood with 1 l of 6 % Dextran) lowered [Hb] by 24 % to 142 +/- 6 g l(-1) (P < 0.001). Haemodilution had no effect on maximal pulmonary or leg V(O(2),max), or power output. Despite higher LBF, leg O(2) delivery was reduced and maximal V(O(2)) was thus maintained by higher O(2) extraction. While CO increased linearly with work rate irrespective of [Hb] or inspired oxygen fraction (F(I,O(2))), both LBF and leg vascular conductance were systematically higher when [Hb] was low. Close and significant relationships were seen between LBF (and CO) and both plasma noradrenaline and K(+) concentrations, independently of [Hb] and F(I,O(2)). In summary, under conditions where O(2) supply limits maximal exercise, the increase in [Hb] with altitude acclimatisation does not improve maximal exercise capacity or V(O(2),max), and does not alter peak CO. However, LBF and vascular conductance are higher at altitude when [Hb] is lowered to sea level values, with both relating closely to catecholamine and potassium concentrations. This suggests that the lack of effect of [Hb] on V(O(2),max) may involve reciprocal changes in LBF via local metabolic control of the muscle vasculature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RAGE mediates diverse physiological and pathological effects by binding a variety of ligands. Despite incomplete understanding of RAGE-mediated disorders soluble RAGE (sRAGE) has been identified as a potential biomarker for RAGE-related diseases and possibly represents a hopeful pharmaceutical against RAGE-mediated disorders. Nevertheless, the source of sRAGE remains poorly investigated. Currently sRAGE is thought to be derived exclusively from alternative splicing of mRNA. In this thesis it was investigated whether sRAGE can also be released as a result of ectodomain shedding of full-length RAGE. Using cells overexpressing RAGE as a model system, it was demonstrated clearly that RAGE undergoes ectodomain shedding in both constitutive and regulated manner. Several stimuli including PMA, AMPA, calcium and chelerythrine stimulated the release of sRAGE into cell culture medium. Moreover, possible mechanisms that regulate ectodomain shedding of RAGE were investigated and it was found that shedding of RAGE is likely independent from PKC and MAPK pathways. By using gain of function and loss of function approaches MMP9 but not ADAM10, ADAM17 or MT1-MMP was characterized as the metalloproteinase that mediates shedding of RAGE. Furthermore, it was shown that cytoplasmic domain of RAGE is not essential for shedding of RAGE. In addition, the potential cleavage site of RAGE by MMP9 was investigated and a lack of sequence specificity for the RAGE processing proteinase was demonstrated by mutation analysis. Finally the physiopathological significance of shedding of RAGE is discussed. In conclusion, for the first time ectodomain shedding of human RAGE and the underlying regulatory mechanisms were investigated. The data open a new field for modulation of RAGE shedding as a novel intervention approach against RAGE-mediated diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graft right ventricular (RV) function is compromised directly posttransplant, especially in heart transplantation (HTx) recipients with pretransplant pulmonary hypertension (PH). Graft RV size and systolic function, and the effect of the recipient's pulmonary haemodynamics on the graft extracellular matrix are not well characterised in the patients long-term after HTx.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study involving 170 patients suffering from non-specific low back pain was to test the validity of the spinal function sort (SFS) in a European rehabilitation setting. The SFS, a picture-based questionnaire, assesses perceived functional ability of work tasks involving the spine. All measurements were taken by a blinded research assistant; work status was assessed with questionnaires. Our study demonstrated a high internal consistency shown by a Cronbach's alpha of 0.98, reasonable evidence for unidimensionality, spearman correlations of >0.6 with work activities, and discriminating power for work status at 3 and 12 months by ROC curve analysis (area under curve = 0.760 (95% CI 0.689-0.822), respectively, 0.801 (95% CI 0.731-0.859). The standardised response mean within the two treatment groups was 0.18 and -0.31. As a result, we conclude that the perceived functional ability for work tasks can be validly assessed with the SFS in a European rehabilitation setting in patients with non-specific low back pain, and is predictive for future work status.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell therapies have gained increasing interest and developed in several approaches related to the treatment of damaged myocardium. The results of multiple clinical trials have already been reported, almost exclusively involving the direct injection of stem cells. It has, however, been postulated that the efficiency of injected cells could possibly be hindered by the mechanical trauma due to the injection and their low survival in the hostile environment. It has indeed been demonstrated that cell mortality due to the injection approaches 90%. Major issues still need to be resolved and bed-to-bench followup is paramount to foster clinical implementations. The tissue engineering approach thus constitutes an attractive alternative since it provides the opportunity to deliver a large number of cells that are already organized in an extracellular matrix. Recent laboratory reports confirmed the interest of this approach and already encouraged a few groups to investigate it in clinical studies. We discuss current knowledge regarding engineered tissue for myocardial repair or replacement and in particular the recent implementation of nanotechnological approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cleft palate is a common birth defect in humans. Elevation and fusion of paired palatal shelves are coordinated by growth and transcription factors, and mutations in these can cause malformations. Among the effector genes for growth factor signaling are extracellular matrix (ECM) glycoproteins. These provide substrates for cell adhesion (e.g., fibronectin, tenascins), but also regulate growth factor availability (e.g., fibrillins). Cleft palate in Bmp7 null mouse embryos is caused by a delay in palatal shelf elevation. In contrast, palatal shelves of Tgf-β3 knockout mice elevate normally, but a cleft develops due to their failure to fuse. However, nothing is known about a possible functional interaction between specific ECM proteins and Tgf-β/Bmp family members in palatogenesis. To start addressing this question, we studied the mRNA and protein distribution of relevant ECM components during secondary palate development, and compared it to growth factor expression in wildtypewild type and mutant mice. We found that fibrillin-2 (but not fibrillin-1) mRNA appeared in the mesenchyme of elevated palatal shelves adjacent to the midline epithelial cells, which were positive for Tgf-β3 mRNA. Moreover, midline epithelial cells started expressing fibronectin upon contact of the two palatal shelves. These findings support the hypothesis that fibrillin-2 and fibronectin are involved in regulating the activity of Tgf-β3 at the fusing midline. In addition, we observed that tenascin-W (but not tenascin-C) was misexpressed in palatal shelves of Bmp7-deficient mouse embryos. In contrast to tenascin-C, tenascin-W secretion was strongly induced by Bmp7 in embryonic cranial fibroblasts in vitro. These results are consistent with a putative function for tenascin-W as a target of Bmp7 signaling during palate elevation. Our results indicate that distinct ECM proteins are important for morphogenesis of the secondary palate, both as downstream effectors and as regulators of Tgf-β/Bmp activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agrin, an extracellular matrix protein belonging to the heterogeneous family of heparan sulfate proteoglycans (HSPGs), is expressed by cells of the hematopoietic system but its role in leukocyte biology is not yet clear. Here we demonstrate that agrin has a crucial, nonredundant role in myeloid cell development and functions. We have identified lineage-specific alterations that affect maturation, survival and properties of agrin-deficient monocytic cells, and occur at stages later than stem cell precursors. Our data indicate that the cell-autonomous signals delivered by agrin are sensed by macrophages through the α-DC (DG) receptor and lead to the activation of signaling pathways resulting in rearrangements of the actin cytoskeleton during the phagocytic synapse formation and phosphorylation of extracellular signal-regulated kinases (Erk 1/2). Altogether, these data identify agrin as a novel player of innate immunity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cascading failure is a failure in a system of interconnected parts, in which the breakdown of one element can lead to the subsequent collapse of the others. The aim of this paper is to introduce a simple combinatorial model for the study of cascading failures. In particular, having in mind particle systems and Markov random fields, we take into consideration a network of interacting urns displaced over a lattice. Every urn is Pólya-like and its reinforcement matrix is not only a function of time (time contagion) but also of the behavior of the neighboring urns (spatial contagion), and of a random component, which can represent either simple fate or the impact of exogenous factors. In this way a non-trivial dependence structure among the urns is built, and it is used to study default avalanches over the lattice. Thanks to its flexibility and its interesting probabilistic properties, the given construction may be used to model different phenomena characterized by cascading failures such as power grids and financial networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND/AIMS: Mammalian target of rapamycin (mTOR) signalling is central in the activation of hepatic stellate cells (HSCs), the key source of extracellular matrix (ECM) in fibrotic liver. We tested the therapeutic potential of the mTOR inhibitor rapamycin in advanced cirrhosis. METHODS: Cirrhosis was induced by bile duct-ligation (BDL) or thioacetamide injections (TAA). Rats received oral rapamycin (0.5 mg/kg/day) for either 14 or 28 days. Untreated BDL and TAA-rats served as controls. Liver function was quantified by aminopyrine breath test. ECM and ECM-producing cells were quantified by morphometry. MMP-2 activity was measured by zymography. mRNA expression of procollagen-alpha1, transforming growth factor-beta1 (TGF-beta1) and beta2 was quantified by RT-PCR. RESULTS: Fourteen days of rapamycin improved liver function. Accumulation of ECM was decreased together with numbers of activated HSCs and MMP-2 activity in both animal models. TGF-beta1 mRNA was downregulated in TAA, TGF-beta2 mRNA was downregulated in BDL. 28 days of rapamycin treatment entailed a survival advantage of long-term treated BDL-rats. CONCLUSIONS: Low-dose rapamycin treatment is effectively antifibrotic and attenuates disease progression in advanced fibrosis. Our results warrant the clinical evaluation of rapamycin as an antifibrotic drug.