977 resultados para Long-range weather forecasts
Resumo:
This article examines the network relationships of a set of large retail multinational enterprises (MNEs). We analyze under what conditions a flagship-network strategy (characterized by a network of five partners – the MNE, key suppliers, key partners, selected competitors and key organisations in the non-business infrastructure) explains the internationalisation of three retailers whose geographic scope, sectoral conditions and competitive strategies differ substantially. We explore why and when retailers will adopt a flagship strategy. The three firms are two U.K.-based multinational retailers (Tesco and The Body Shop) and a French-based global retailer (Moët Hennessy Louis Vuitton). We find evidence of strong network relationships for all three retailers, although each embraces network strategies for different reasons. Their flagship relationships depend on each retailer's strategic use of firm-specific-advantages (FSAs) and country-specific advantages (CSAs). We find that a flagship strategy can succeed in overcoming internal and/or environmental constraints to cross-border resource transfers, which are barriers to foreign direct investment (FDI). We provide recommendations on why and when to use a flagship-based strategy and which type of network partners to prioritize in order to succeed internationally.
Resumo:
The motion of adsorbate molecules across surfaces is fundamental to self-assembly, material growth, and heterogeneous catalysis. Recent Scanning Tunneling Microscopy studies have demonstrated the electron-induced long-range surface-migration of ethylene, benzene, and related molecules, moving tens of Angstroms across Si(100). We present a model of the previously unexplained long-range recoil of chemisorbed ethylene across the surface of silicon. The molecular dynamics reveal two key elements for directed long-range migration: first ‘ballistic’ motion that causes the molecule to leave the ab initio slab of the surface traveling 3–8 Å above it out of range of its roughness, and thereafter skipping-stone ‘bounces’ that transport it further to the observed long distances. Using a previously tested Impulsive Two-State model, we predict comparable long-range recoil of atomic chlorine following electron-induced dissociation of chlorophenyl chemisorbed at Cu(110)
Resumo:
Extratropical transition (ET) has eluded objective identification since the realisation of its existence in the 1970s. Recent advances in numerical, computational models have provided data of higher resolution than previously available. In conjunction with this, an objective characterisation of the structure of a storm has now become widely accepted in the literature. Here we present a method of combining these two advances to provide an objective method for defining ET. The approach involves applying K-means clustering to isolate different life-cycle stages of cyclones and then analysing the progression through these stages. This methodology is then tested by applying it to five recent years from the European Centre of Medium-Range Weather Forecasting operational analyses. It is found that this method is able to determine the general characteristics for ET in the Northern Hemisphere. Between 2008 and 2012, 54% (±7, 32 of 59) of Northern Hemisphere tropical storms are estimated to undergo ET. There is great variability across basins and time of year. To fully capture all the instances of ET is necessary to introduce and characterise multiple pathways through transition. Only one of the three transition types needed has been previously well-studied. A brief description of the alternate types of transitions is given, along with illustrative storms, to assist with further study
Resumo:
For a particular family of long-range potentials V, we prove that the eigenvalues of the indefinite Sturm–Liouville operator A = sign(x)(−Δ+V(x)) accumulate to zero asymptotically along specific curves in the complex plane. Additionally, we relate the asymptotics of complex eigenvalues to the two-term asymptotics of the eigenvalues of associated self-adjoint operators.
Resumo:
A recent intercomparison exercise proposed by the Working Group for Numerical Experimentation (WGNE) revealed that the parameterized, or unresolved, surface stress in weather forecast models is highly model-dependent, especially over orography. Models of comparable resolution differ over land by as much as 20% in zonal mean total subgrid surface stress (Ttot). The way Ttot is partitioned between the different parameterizations is also model-dependent. In this study, we simulated in a particular model an increase in Ttot comparable with the spread found in the WGNE intercomparison. This increase was simulated in two ways, namely by increasing independently the contributions to Ttot of the turbulent orographic form drag scheme (TOFD) and of the orographic low-level blocking scheme (BLOCK). Increasing the parameterized orographic drag leads to significant changes in surface pressure, zonal wind and temperature in the Northern Hemisphere during winter both in 10 day weather forecasts and in seasonal integrations. However, the magnitude of these changes in circulation strongly depends on which scheme is modified. In 10 day forecasts, stronger changes are found when the TOFD stress is increased, while on seasonal time scales the effects are of comparable magnitude, although different in detail. At these time scales, the BLOCK scheme affects the lower stratosphere winds through changes in the resolved planetary waves which are associated with surface impacts, while the TOFD effects are mostly limited to the lower troposphere. The partitioning of Ttot between the two schemes appears to play an important role at all time scales.
Resumo:
Cutoff lows (COLs) pressure systems climatology for the Southern Hemisphere (SH), between 10 degrees S and 50 degrees S, using the National Center for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) and the ERA-40 European Centre for Medium Range Weather Forecast (ECMWF) reanalyses are analyzed for the period 1979-1999. COLs were identified at three pressure levels (200, 300, and 500 hPa) using an objective method that considers the main physical characteristics of the conceptual model of COLs. Independently of the pressure level analyzed, the climatology from the ERA-40 reanalysis has more COLs systems than the NCEP-NCAR. However, both reanalyses present a large frequency of COLs at 300 hPa, followed by 500 and 200 hPa. The seasonality of COLs differs at each pressure level, but it is similar between the reanalyses. COLs are more frequent during summer, autumn, and winter at 200, 300, and 500 hPa, respectively. At these levels, they tend to occur around the continents, preferentially from southeastern Australia to New Zealand, the south of South America, and the south of Africa. To study the COLs at 200 and 300 hPa from a regional perspective, the SH was divided in three regions: Australia-New Zealand (60 E-130 W), South America (130 degrees W-20 degrees W), and southern Africa (20 degrees W-60 degrees E). The common COLs features in these sectors for both reanalyses are a short lifetime (similar to 80.0% and similar to 70.0% of COLs at 200 and 300 hPa, respectively, persisting for up to 3 days), mobility (similar to 70.0% and similar to 50% of COLs at 200 and 300 hPa, respectively, traveling distances of up to 1200 km), and an eastward propagation.
Resumo:
In this Letter, we determine the kappa-distribution function for a gas in the presence of an external field of force described by a potential U(r). In the case of a dilute gas, we show that the kappa-power law distribution including the potential energy factor term can rigorously be deduced in the framework of kinetic theory with basis on the Vlasov equation. Such a result is significant as a preliminary to the discussion on the role of long range interactions in the Kaniadakis thermostatistics and the underlying kinetic theory. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Recurrent submicroscopic genomic copy number changes are the result of nonallelic homologous recombination (NAHR). Nonrecurrent aberrations, however, can result from different nonexclusive recombination-repair mechanisms. We previously described small microduplications at Xq28 containing MECP2 in four male patients with a severe neurological phenotype. Here, we report on the fine-mapping and breakpoint analysis of 16 unique microduplications. The size of the overlapping copy number changes varies between 0.3 and 2.3 Mb, and FISH analysis on three patients demonstrated a tandem orientation. Although eight of the 32 breakpoint regions coincide with low-copy repeats, none of the duplications are the result of NAHR. Bioinformatics analysis of the breakpoint regions demonstrated a 2.5-fold higher frequency of Alu interspersed repeats as compared with control regions, as well as a very high GC content (53%). Unexpectedly, we obtained the junction in only one patient by long-range PCR, which revealed nonhomologous end joining as the mechanism. Breakpoint analysis in two other patients by inverse PCR and subsequent array comparative genomic hybridization analysis demonstrated the presence of a second duplicated region more telomeric at Xq28, of which one copy was inserted in between the duplicated MECP2 regions. These data suggest a two-step mechanism in which part of Xq28 is first inserted near the MECP2 locus, followed by breakage-induced replication with strand invasion of the normal sister chromatid. Our results indicate that the mechanism by which copy number changes occur in regions with a complex genomic architecture can yield complex rearrangements.
Resumo:
Submicron atmospheric particles in the Amazon Basin were characterized by a high-resolution aerosol mass spectrometer during the wet season of 2008. Patterns in the mass spectra closely resembled those of secondary-organic-aerosol (SOA) particles formed in environmental chambers from biogenic precursor gases. In contrast, mass spectral indicators of primary biological aerosol particles (PBAPs) were insignificant, suggesting that PBAPs contributed negligibly to the submicron fraction of particles during the period of study. For 40% of the measurement periods, the mass spectra indicate that in-Basin biogenic SOA production was the dominant source of the submicron mass fraction, contrasted to other periods (30%) during which out-of-Basin organic-carbon sources were significant on top of the baseline in-Basin processes. The in-Basin periods had an average organic-particle loading of 0.6 mu g m(-3) and an average elemental oxygen-to-carbon (O:C) ratio of 0.42, compared to 0.9 mu g m(-3) and 0.49, respectively, during periods of out-of-Basin influence. On the basis of the data, we conclude that most of the organic material composing submicron particles over the Basin derived from biogenic SOA production, a finding that is consistent with microscopy observations made in a concurrent study. This source was augmented during some periods by aged organic material delivered by long-range transport. Citation: Chen, Q., et al. (2009), Mass spectral characterization of submicron biogenic organic particles in the Amazon Basin, Geophys. Res. Lett., 36, L20806, doi: 10.1029/2009GL039880.
Resumo:
Quasi-simultaneous vertically resolved multiwavelength aerosol Raman lidar observations were conducted in the near field (Praia, Cape Verde, 15 degrees N, 23.5 degrees W) and in the far field (Manaus, Amazon basin, Brazil, 2.5 degrees S, 60 degrees W) of the long-range transport regime between West Africa and South America. Based on a unique data set (case study) of spectrally resolved backscatter and extinction coefficients, and of the depolarization ratio a detailed characterization of aerosol properties, vertical stratification, mixing, and aging behavior during the long-distance travel in February 2008 (dry season in western Africa, wet season in the Amazon basin) is presented. While highly stratified aerosol layers of dust and smoke up to 5.5 km height were found close to Africa, the aerosol over Manaus was almost well-mixed, reached up to 3.5 km, and mainly consisted of aged biomass burning smoke. Citation: Ansmann, A., H. Baars, M. Tesche, D. Muller, D. Althausen, R. Engelmann, T. Pauliquevis, and P. Artaxo (2009), Dust and smoke transport from Africa to South America: Lidar profiling over Cape Verde and the Amazon rainforest, Geophys. Res. Lett., 36, L11802, doi: 10.1029/2009GL037923.
Resumo:
We consider independent edge percolation models on Z, with edge occupation probabilities. We prove that oriented percolation occurs when beta > 1 provided p is chosen sufficiently close to 1, answering a question posed in Newman and Schulman (Commun. Math. Phys. 104: 547, 1986). The proof is based on multi-scale analysis.
Resumo:
We report on experimental studies of the Kondo physics and the development of non-Fermi-liquid scaling in UCu(4+x)Al(8-x) family. We studied 7 different compounds with compositions between x = 0 and 2. We measured electrical transport (down to 65 mK) and thermoelectric power (down to 1.8 K) as a function of temperature, hydrostatic pressure, and/or magnetic field. Compounds with Cu content below x = 1.25 exhibit long-range antiferromagnetic order at low temperatures. Magnetic order is suppressed with increasing Cu content and our data indicate a possible quantum critical point at x(cr) approximate to 1.15. For compounds with higher Cu content, non-Fermi-liquid behavior is observed. Non-Fermi-liquid scaling is inferred from electrical resistivity results for the x = 1.25 and 1.5 compounds. For compounds with even higher Cu content, a sharp kink occurs in the resistivity data at low temperatures, and this may be indicative of another quantum critical point that occurs at higher Cu compositions. For the magnetically ordered compounds, hydrostatic pressure is found to increase the Neel temperature, which can be understood in terms of the Kondo physics. For the non-magnetic compounds, application of a magnetic field promotes a tendency toward Fermi-liquid behavior. Thermoelectric power was analyzed using a two-band Lorentzian model, and the results indicate one fairly narrow band (10 meV and below) and a second broad band (around hundred meV). The results imply that there are two relevant energy scales that need to be considered for the physics in this family of compounds. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A new quaternary intermetallic borocarbide TmCo(2)B(2)C has been synthesized via rapid-quench of an arc-melted ingot. Elemental and powder-diffraction analyses established its correct stoichiometry and single-phase character. The crystal structure is isomorphous with that of TmNi(2)B(2)C (I4/mmm) and is stable over the studied temperature range. Above 7 K, the paramagnetic state follows modified Curie-Weiss behavior (chi = C/(T - theta) + chi(0)) wherein chi(0) = 0.008(1) emu mol(-1) with the temperature-dependent term reflecting the paramagnetism of the Tm subsystem: mu(eff) = 7.6(2) mu(B) (in agreement with the expected value for a free Tm(3+) ion) and theta = -4.5(3) K. Long-range ferromagnetic order of the Tm sublattice is observed to develop around similar to 1 K. No superconductivity is detected in TmCo(2)B(2)C down to 20 mK, a feature which is consistent with the general trend in the RCo(2)B(2)C series. Finally, the influence of the rapid-quench process on the magnetism (and superconductivity) of TmNi(2)B(2)C will be discussed and compared to that of TmCo(2)B(2)C.
Resumo:
The temperature dependence of the crystalline structure and the lattice parameters of Pb1-xLaxZr0.40Ti0.60O3 ferroelectric ceramic system with 0.00 x 0.21 was determined. The samples with x 0.11 show a cubic-to-tetragonal phase transition at the maximum dielectric permittivity, Tmax. Above this amount and especially for the x = 0.12 sample, a spontaneous phase transition from a relaxor ferroelectric state (cubic phase) to a ferroelectric state (tetragonal phase) is observed upon cooling below the Tmax. Unlike what has been reported in other studies, the x = 0.13, 0.14, and 0.15 samples, which present a more pronounced relaxor behavior, also presents a spontaneous normal-to-relaxor transition, indicated by a cubic to tetragonal symmetry below the Tmax. The origin of this anomaly has been associated with an increase in the degree of tetragonality, confirmed by the measurements of the X-ray diffraction patterns. The differential thermal analysis (DSC) measurements also confirm the existence of these phase transitions.
Resumo:
We have revisited photoassociative ionization (PAI) in a cold sample of Na atmos. A two-color experiment was performed ina magneto-optical trap through the addition of aprobe laser. The observation of a marked change in the PAI rate for a definite frequency range can be attributed to the influence of repuisive levels and a possible avoided crossing between long-range molecular levels. (c) 2009 by Astro Ltd. Published exclusively by WLLEY-VCH Verlag GmbH & Co. KGaA