991 resultados para Livestock poisoning plants - Toxicology - Congresses
Resumo:
The detection of paralytic shellfish poisoning (PSP) toxins in contaminated shellfish is essential for human health preservation. Ethical and technical reasons have prompted the search for new detection procedures as an alternative to the mouse bioassay. On the basis of the detection of molecular interactions by surface plasmon resonance (SPR) biosensors, an inhibition assay was developed using an anti-GTX2/3 antibody (GT13-A) and a saxitoxin-CM5 chip. This assay allowed for quantification of saxitoxin (STX), decarbamoyl saxitoxin (dcSTX), gonyautoxin 2,3 (GTX2/3), decarbamoyl gonyautoxin 2,3 (dcGTX2/3), gonyautoxin 5 (GTX5), and C 1,2 (C1/2) at concentrations from 2 to 50 ng/mL. The interference of five shellfish matrixes with the inhibition assay was analyzed. Mussels, clams, cockles, scallops, and oysters were extracted with five published methods. Ethanol extracts and acetic acid/heat extracts (AOAC Lawrence method) performed adequately in terms of surface regeneration and baseline interference, did not inhibit antibody binding to the chip surface significantly, and presented STX calibration curves similar to buffer controls in all matrixes tested. Hydrochloric acid/heat extracts (AOAC mouse bioassay method) presented surface regeneration problems, and although ethanol-acetic acid/dichloromethane extracts performed well, they were considered too laborious for routine sample testing. Overall the best results were obtained with the ethanol extraction method with calibration curves prepared in blank matrix extracts. STX recovery rate with the ethanol extraction method was 60.52 ± 3.72%, with variations among species. The performance of this biosensor assay in natural samples, compared to two AOAC methods for PSP toxin quantification (mouse bioassay and HPLC), suggests that this technology can be useful as a PSP screening assay. In summary, the GT13-A-STX chip inhibition assay is capable of PSP toxin detection in ethanol shellfish extracts, with sufficient sensitivity to quantify the toxin in the range of the European regulatory limit of 80 g/100 g of shellfish meat.
Resumo:
Density functional theory calculations have been used to investigate the chemisorption of H, S, SH, and H2S as well as the hydrogenation reactions S+H and SH+H on a Rh surface with steps, Rh(211), aiming to explain sulfur poisoning effect. In the S hydrogenation from S to H2S, the transition state of the first step S+H-->SH is reached when the S moves to the step-bridge and H is on the off-top site. In the second step, SH+H-->H2S, the transition state is reached when SH moves to the top site and H is close to another top site nearby. Our results show that it is difficult to hydrogenate S and they poison defects such as steps. In order to address why S is poisoning, hydrogenation of C, N, and O on Rh(211) has also been calculated and has been found that the reverse and forward reactions possess similar barriers in contrast to the S hydrogenation. The physical origin of these differences has been analyzed and discussed. (C) 2005 American Institute of Physics.
Resumo:
Seven ethnobotanically selected medicinal plants were screened for their antimycobacterial activity. The mininium inhibitory concentration (MIC) of four plants namely Artemisia afra, Dodonea angustifolia, Drosera capensis and Galenia africana ranged from 0.781 to 6.25 mg/mL against Mycobacterium smegmatis. G. africana showed the best activity exhibiting an MIC of 0.78 mg/mL and a minimum bactericidal concentration (MBC) of 1.56 mg/mL. The MICs of ethanol extracts of A angustifolia and G. africana against M. tuberculosis were found to be 5.0 and 1.2 mg/mL respectively. The mammalian cytotoxicity IC50 value of the most active antimycobacterial extract, from G. africana, was found to be 101.3 mu g/mL against monkey kidney Vero cells. Since the ethanol G. africana displayed the best antimycobacterial activity, it was subjected to fractionation which led to the isolation of a flavone, 5,7,2'-trihydroxyflavone. The MIC of this compound was found to be 0.031 mg/mL against M. smegmatis and 0.10 mg/mL against M. tuberculosis. This study gives some scientific basis to the 14 traditional use of these plants for TB-related symptoms. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Since the publication of Hobsbawm and Rudé's Captain Swing our understanding of the role(s) of covert protests in Hanoverian rural England has advanced considerably. Whilst we now know much about the dramatic practices of incendiarism and animal maiming and the voices of resistance in seemingly straightforward acquisitive acts, one major gap remains. Despite the fact that almost thirty years have passed since E. P. Thompson brought to our attention that under the notorious ‘Black Act’ the malicious cutting of trees was a capital offence, no subsequent research has been published. This paper seeks to address this major lacuna by systematically analysing the practices and patterns of malicious attacks on plants (‘plant maiming’) in the context of late eighteenth- and early nineteenth-century southern England. It is shown that not only did plant maiming take many different forms, attacking every conceivable type of flora, but also that it was universally understood and practised. In some communities plant maiming was the protestors' weapon of choice. As a social practice it therefore embodied wider community beliefs regarding the defence of plebeian livelihoods and identities.