925 resultados para Lipophilic antioxidants
Resumo:
Aluminum (Al3+) intoxication is thought to play a major role in the development of Alzheimer's disease and in certain pathologic manifestations arising from long-term hemodialysis. Although the metal does not present redox capacity, it can stimulate tissue lipid peroxidation in animal models. Furthermore, in vitro studies have revealed that the fluoroaluminate complex induces diacylglycerol formation, 43-kDa protein phosphorylation and aggregation. Based on these observations, we postulated that Al3+-induced blood platelet aggregation was mediated by lipid peroxidation. Using chemiluminescence (CL) of luminol as an index of total lipid peroxidation capacity, we established a correlation between lipid peroxidation capacity and platelet aggregation. Al3+ (20-100 µM) stimulated CL production by human blood platelets as well as their aggregation. Incubation of the platelets with the antioxidants nor-dihydroguaiaretic acid (NDGA) (100 µM) and n-propyl gallate (NPG) (100 µM), inhibitors of the lipoxygenase pathway, completely prevented CL and platelet aggregation. Acetyl salicylic acid (ASA) (100 µM), an inhibitor of the cyclooxygenase pathway, was a weaker inhibitor of both events. These findings suggest that Al3+ stimulates lipid peroxidation and the lipoxygenase pathway in human blood platelets thereby causing their aggregation
Resumo:
Animal studies suggest that olive oil is capable of modulating functions of cells of the immune system in a manner similar to, albeit weaker than, fish oils. There is some evidence that the effects of olive oil on immune function in animal studies are due to oleic acid rather than to trace elements or antioxidants. Importantly, several studies have demonstrated effects of oleic acid-containing diets on in vivo immune responses. In contrast, consumption of a monounsaturated fatty acid (MUFA)-rich diet by humans does not appear to bring about a general suppression of immune cell functions. The effects of this diet in humans are limited to decreasing aspects of adhesion of peripheral blood mononuclear cells, although there are trends towards decreases in natural killer cell activity and proliferation. The lack of a clear effect of MUFA in humans may be attributable to the higher level of monounsaturated fat used in the animal studies, although it is ultimately of importance to examine the effects of intakes which are in no way extreme. The effects of MUFA on adhesion molecules are potentially important, since these molecules appear to have a role in the pathology of a number of diseases involving the immune system. This area clearly deserves further exploration
Resumo:
We have studied the effect of peroxynitrite (ONOO-) on the membrane cytoskeleton of red blood cells and its protection by melatonin. Analysis of the protein fraction of the preparation by SDS-PAGE revealed a dose-dependent (0-600 µM ONOO-) disappearance at pH 7.4 of the main proteins: spectrin, band 3, and actin, with the concomitant formation of high-molecular weight aggregates resistant to reduction by ß-mercaptoethanol (2%) at room temperature for 20 min. These aggregates were not solubilized by 8 M urea. Incubation of the membrane cytoskeleton with ONOO- was characterized by a marked depletion of free sulfhydryl groups (50% at 250 µM ONOO-). However, a lack of effect of ß-mercaptoethanol suggests that, under our conditions, aggregate formation is not mediated only by sulfhydryl oxidation. The lack of a protective effect of the metal chelator diethylenetriaminepentaacetic acid confirmed that ONOO--induced oxidative damage does not occur only by a transition metal-dependent mechanism. However, we demonstrated a strong protection against cytoskeletal alterations by desferrioxamine, which has been described as a direct scavenger of the protonated form of peroxynitrite. Desferrioxamine (0.5 mM) also inhibited the loss of tryptophan fluorescence observed when the ghosts were treated with ONOO-. Glutathione, cysteine, and Trolox® (1 mM), but not mannitol (100 mM), were able to protect the proteins against the effect of ONOO- in a dose-dependent manner. Melatonin (0-1 mM) was especially efficient in reducing the loss of spectrin proteins when treated with ONOO- (90% at 500 µM melatonin). Our findings show that the cytoskeleton, and in particular spectrin, is a sensitive target for ONOO-. Specific antioxidants can protect against such alterations, which could seriously impair cell dynamics and generate morphological changes.
Resumo:
The livers of Geophagus brasiliensis collected from both a non-polluted site and a polluted site were analyzed for different antioxidant defenses, O2 consumption, thiobarbituric acid-reactive substance (TBARS) levels, and histological damage. Compared to controls (116.6 ± 26.1 nmol g-1), TBARS levels were enhanced at the polluted site (284.2 ± 25.6 nmol g-1), as also was oxygen consumption (86.6 ± 11.3 and 128.5 ± 9.8 µmol O2 min-1 g-1, respectively). With respect to enzymatic antioxidants, increased catalase activities (8.7 ± 1.3 and 29.2 ± 2.4 mmol min-1 g-1, respectively), unchanged superoxide dismutase activities (767.2 ± 113.3 and 563.3 ± 70.2 U g-1, respectively), and diminished glutathione S-transferase activities (29.0 ± 3.2 and 14.9 ± 3.2 µmol min-1 g-1, respectively) were detected. Reduced glutathione (1.91 ± 0.17 and 1.37 ± 0.25 mM, respectively), oxidized glutathione (1.50 ± 0.20 and 0.73 ± 0.17 mM, respectively), and total glutathione (3.40 ± 0.26 and 2.07 ± 0.27 mM, respectively) concentrations were also below control values at the polluted site. Nevertheless, the observed ethoxyresorufin-O-deethylase activities (1.34 ± 0.11 and 16.7 ± 0.21 pmol min-1 mg-1, respectively) showed enhanced values at the polluted site. The main histological damage observed in the hepatocytes from fish collected at the polluted site was characterized by heavy lipid infiltration. Fish collected at the end of spring showed higher O2 consumption, higher superoxide dismutase and glutathione S-transferase activities, and higher total and oxidized glutathione concentrations compared to the beginning of autumn. No seasonal changes were observed in catalase activities, glutathione or TBARS levels. Fish chronically exposed to relatively high pollution levels seem to be unable to set up adequate antioxidant defenses, probably due to severe injury to their hepatocytes. The higher antioxidant defenses found at the end of spring are probably related to the enhanced activities during high temperature periods in thermoconforming organisms.
Resumo:
Although the role of oxidized lipoproteins is well known in atherogenesis, the role of vitamin E supplementation is still controversial. There is also little information about cholesterol metabolism (hepatic concentration and fecal excretion) in the new models of atherosclerosis. In the present study, we evaluated the effect of moderate vitamin E supplementation on cholesterol metabolism and atherogenesis in apolipoprotein E (apo E)-deficient mice. Apo E-deficient mice were fed an atherogenic diet containing 40 or 400 mg/kg of alpha-tocopherol acetate for 6 weeks. Total cholesterol in serum and liver and 3-OH-alpha-sterols in feces, and fecal excretion of bile acids were determined and histological analyses of aortic lesion were performed. A vitamin E-rich diet did not affect body weight, food intake or serum cholesterol. Serum and hepatic concentrations of cholesterol as well as sterol concentration in feces were similar in both groups. However, when compared to controls, the alpha-tocopherol-treated mice showed a reduction of about 60% in the atherosclerotic lesions when both the sum of lesion areas and the average of the largest lesion area were considered. These results demonstrate that supplementation of moderate doses of alpha-tocopherol was able to slow atherogenesis in apo E-deficient mice and to reduce atherogenic lipoproteins without modifying the hepatic pool or fecal excretion of cholesterol and bile acids.
Resumo:
There is evidence concerning the participation of reactive oxygen species in the etiology and physiopathology of human diseases, such as neurodegenerative disorders, inflammation, viral infections, autoimmune pathologies, and digestive system disorders such as gastrointestinal inflammation and gastric ulcer. The role of these reactive oxygen species in several diseases and the potential antioxidant protective effect of natural compounds on affected tissues are topics of high current interest. To consider a natural compound or a drug as an antioxidant substance it is necessary to investigate its antioxidant properties in vitro and then to evaluate its antioxidant functions in biological systems. In this review article, we shall consider the role of natural antioxidants derived from popular plants to reduce or prevent the oxidative stress in gastric ulcer induced by ethanol.
Resumo:
The objective of the present study was to identify disturbances of nitric oxide radical (·NO) metabolism and the formation of cholesterol oxidation products in human essential hypertension. The concentrations of·NO derivatives (nitrite, nitrate, S-nitrosothiols and nitrotyrosine), water and lipid-soluble antioxidants and cholesterol oxides were measured in plasma of 11 patients with mild essential hypertension (H: 57.8 ± 9.7 years; blood pressure, 148.3 ± 24.8/90.8 ± 10.2 mmHg) and in 11 healthy subjects (N: 48.4 ± 7.0 years; blood pressure, 119.4 ± 9.4/75.0 ± 8.0 mmHg).Nitrite, nitrate and S-nitrosothiols were measured by chemiluminescence and nitrotyrosine was determined by ELISA. Antioxidants were determined by reverse-phase HPLC and cholesterol oxides by gas chromatography. Hypertensive patients had reduced endothelium-dependent vasodilation in response to reactive hyperemia (H: 9.3 and N: 15.1% increase of diameter 90 s after hyperemia), and lower levels of ascorbate (H: 29.2 ± 26.0, N: 54.2 ± 24.9 µM), urate (H: 108.5 ± 18.9, N: 156.4 ± 26.3 µM), ß-carotene (H: 1.1 ± 0.8, N: 2.5 ± 1.2 nmol/mg cholesterol), and lycopene (H: 0.4 ± 0.2, N: 0.7 ± 0.2 nmol/mg cholesterol), in plasma, compared to normotensive subjects. The content of 7-ketocholesterol, 5alpha-cholestane-3ß,5,6ß-triol and 5,6alpha-epoxy-5alpha-cholestan-3alpha-ol in LDL, and the concentration of endothelin-1 (H: 0.9 ± 0.2, N: 0.7 ± 0.1 ng/ml) in plasma were increased in hypertensive patients. No differences were found for ·NO derivatives between groups. These data suggest that an increase in cholesterol oxidation is associated with endothelium dysfunction in essential hypertension and oxidative stress, although ·NO metabolite levels in plasma are not modified in the presence of elevated cholesterol oxides.
Resumo:
It is recognized that an imbalance of the autonomic nervous system is involved in the genesis of ventricular arrhythmia and sudden death during myocardial ischemia. In the present study we investigated the effects of clonidine and rilmenidine, two centrally acting sympathomodulatory drugs, on an experimental model of centrally induced sympathetic hyperactivity in pentobarbital-anesthetized New Zealand albino rabbits of either sex (2-3 kg, N = 89). We also compared the effects of clonidine and rilmenidine with those of propranolol, a ß-blocker, known to induce protective cardiovascular effects in patients with ischemic heart disease. Central sympathetic stimulation was achieved by intracerebroventricular injection of the excitatory amino acid L-glutamate (10 µmol), associated with inhibition of nitric oxide synthesis with L-NAME (40 mg/kg, iv). Glutamate triggered ventricular arrhythmia and persistent ST-segment shifts in the ECG, indicating myocardial ischemia. The intracisternal administration of clonidine (1 µg/kg) and rilmenidine (30 µg/kg) or of a nonhypotensive dose of rilmenidine (3 µg/kg) decreased the incidence of myocardial ischemia (25, 14 and 25%, respectively, versus 60% in controls) and reduced the mortality rate from 40% to 0.0, 0.0 and 12%, respectively. The total number of ventricular premature beats per minute fell from 30 ± 9 in the control group to 7 ± 3, 6 ± 3 and 2 ± 2, respectively. Intravenous administration of clonidine (10 µg/kg), rilmenidine (300 µg/kg) or propranolol (500 µg/kg) elicited similar protective effects. We conclude that clonidine and rilmenidine present cardioprotective effects of central origin, which can be reproduced by propranolol, a lipophilic ß-blocking agent.
Resumo:
Surfactants are frequently used to improve solubilization of lipophilic drugs. Cremophor EL (CrEL) is a polyoxyethylated castor oil surfactant used to solubilize water-insoluble drugs such as anesthetic, antineoplastic, immunosuppressive and analgesic drugs, vitamins and new synthetic compounds, including potential analgesics. The antinociceptive effect of CrEL (3.2, 6.4 and 10.6 g/kg, in 10 ml/kg body weight, by gavage) on the abdominal writhing response induced by intraperitoneal administration of acetic acid (0.8%, 10 ml/kg body weight) and on the tail immersion test was investigated in mice. Control animals received castor oil (10 ml/kg body weight) or saline (0.9% NaCl, 10 ml/kg body weight). CrEL reduced nociception in a dose-dependent manner in both tests. At 10.6 g/kg, CrEL caused antinociception similar to that induced by dipyrone (300 mg/kg, by gavage) in the abdominal writhing test, and antinociception similar to that induced by morphine (20 mg/kg, by gavage) in the tail immersion test. The effect of castor oil was similar to that of saline in both assays. These data indicate that the appropriate controls should be used when evaluating the effects of potential antinociceptive agents dissolved in CrEL.
Resumo:
Chemoprotection by dietary agents is a promising strategy for cancer prevention. The aim of the present study was to evaluate the combined effect of tomato and garlic against 7,12-dimethylbenz- [a]anthracene (DMBA)-induced genetic damage and oxidative stress in 12-14-week-old male Swiss albino mice. The animals were randomized into experimental and control groups and divided into eight groups of five animals each. Group 1 animals were injected intraperitoneally with 35 mg/kg body weight DMBA suspended in peanut oil as a single dose. Groups 2-4 animals received tomato (500 mg/kg body weight), garlic (125 mg/kg body weight) and a combination of tomato and garlic for 5 days by gavage, respectively, followed by DMBA 1.5 h after the final feeding. The doses of tomato and garlic correspond to the average human daily consumption. Animals in groups 5, 6 and 7 received tomato alone, garlic alone and tomato + garlic combination, respectively, for 5 days. Group 8 animals received the same volume of water and served as control. The incidence of bone marrow micronuclei and the extent of lipid peroxidation and the concentrations of antioxidants glutathione, glutathione peroxidase and glutathione-S-transferase were measured in the liver, 48 h after DMBA exposure. Increased frequency of micronuclei and enhanced lipid peroxidation accompanied by compromised antioxidant defenses were observed in DMBA-treated animals. Although pretreatment with tomato or garlic significantly reduced the frequency of DMBA-induced bone marrow micronuclei, the combination of tomato and garlic exhibited more profound effect in inhibiting DMBA-induced genotoxicity and oxidative stress. We suggest that a broad spectrum of antimutagenic and anticlastogenic effects can be achieved through an effective combination of functional foods such as tomato and garlic.
Resumo:
Increased dopamine catabolism may be associated with oxidative stress and neuronal cell death in Parkinson's disease. The present study was carried out to examine the effect of dopamine on the expression of heme oxygenase-1 and -2 (HO-1 and HO-2) in human neuroblastomas (SK-N-SH cell line) and the effects of selegiline and antioxidants on this expression. Cells were kept with close control of pH and were incubated with varying concentrations of dopamine (0.1-100 µM) for 24 h. HO-1 and HO-2 cDNA probes were prepared by reverse transcription-polymerase chain reaction amplification. The mRNA expression of HO-1 and HO-2 was measured by Northern blot analysis. The levels of HO-1 mRNA increased after dopamine treatment, in a dose-dependent manner, in all cell lines studied, whereas levels of the two HO-2 transcripts did not. The HO-1 and HO-2 protein expression was analyzed by Western blotting. HO-1 protein was undetectable in untreated SK-N-SH cells and increased after treatment with dopamine. In contrast, the HO-2 protein (36 kDa) was detected in untreated cells and the levels did not change as a result of treatment. alpha-Tocopherol (10-100 µM) and ascorbic acid (100 µM) did not attenuate the effects of dopamine. Selegiline (10 µM) produced significant increase (P < 0.01) in the induction of HO-1 by dopamine (more than six times the control values). The increased expression of HO-1 following dopamine treatment indicates that dopamine produces oxidative stress in this cell line.
Resumo:
Potentiometric sensors are very attractive tools for chemical analysis because of their simplicity, low power consumption and low cost. They are extensively used in clinical diagnostics and in environmental monitoring. Modern applications of both fields require improvements in the conventional construction and in the performance of the potentiometric sensors, as the trends are towards portable, on-site diagnostics and autonomous sensing in remote locations. The aim of this PhD work was to improve some of the sensor properties that currently hamper the implementation of the potentiometric sensors in modern applications. The first part of the work was concentrated on the development of a solid-state reference electrode (RE) compatible with already existing solid-contact ion-selective electrodes (ISE), both of which are needed for all-solid-state potentiometric sensing systems. A poly(vinyl chloride) membrane doped with a moderately lipophilic salt, tetrabutylammonium-tetrabutylborate (TBA-TBB), was found to show a satisfactory stability of potential in sample solutions with different concentrations. Its response time was nevertheless slow, as it required several minutes to reach the equilibrium. The TBA-TBB membrane RE worked well together with solid-state ISEs in several different situations and on different substrates enabling a miniature design. Solid contacts (SC) that mediate the ion-to-electron transduction are crucial components of well-functioning potentiometric sensors. This transduction process converting the ionic conduction of an ion-selective membrane to the electronic conduction in the circuit was studied with the help of electrochemical impedance spectroscopy (EIS). The solid contacts studied were (i) the conducting polymer (CP) poly(3,4-ethylienedioxythiophene) (PEDOT) and (ii) a carbon cloth having a high surface area. The PEDOT films were doped with a large immobile anion poly(styrene sulfonate) (PSS-) or with a small mobile anion Cl-. As could be expected, the studied PEDOT solid-contact mediated the ion-toelectron transduction more efficiently than the bare glassy carbon substrate, onto which they were electropolymerized, while the impedance of the PEDOT films depended on the mobility of the doping ion and on the ions in the electrolyte. The carbon cloth was found to be an even more effective ion-to-electron transducer than the PEDOT films and it also proved to work as a combined electrical conductor and solid contact when covered with an ion-selective membrane or with a TBA-TBB-based reference membrane. The last part of the work was focused on improving the reproducibility and the potential stability of the SC-ISEs, a problem that culminates to the stability of the standard potential E°. It was proven that the E° of a SC-ISE with a conducting polymer as a solid contact could be adjusted by reducing or oxidizing the CP solid contact by applying current pulses or a potential to it, as the redox state of the CP solid-contact influences the overall potential of the ISE. The slope and thus the analytical performance of the SC-ISEs were retained despite the adjustment of the E°. The shortcircuiting of the SC-ISE with a conventional large-capacitance RE was found to be a feasible instrument-free method to control the E°. With this method, the driving force for the oxidation/reduction of the CP was the potential difference between the RE and the SC-ISE, and the position of the adjusted potential could be controlled by choosing a suitable concentration for the short-circuiting electrolyte. The piece-to-piece reproducibility of the adjusted potential was promising, and the day-today reproducibility for a specific sensor was excellent. The instrumentfree approach to control the E° is very attractive considering practical applications.
Resumo:
The present study was designed to evaluate the time course changes in peripheral markers of oxidative stress in a chronic HgCl2 intoxication model. Twenty male adult Wistar rats were treated subcutaneously daily for 30 days and divided into two groups of 10 animals each: Hg, which received HgCl2 (0.16 mg kg-1 day-1), and control, receiving the same volume of saline solution. Blood was collected at the first, second and fourth weeks of Hg administration to evaluate lipid peroxidation (LPO), total radical trapping antioxidant potential (TRAP), and superoxide dismutase (Cu,Zn-SOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and catalase (CAT). HgCl2 administration induced a rise (by 26%) in LPO compared to control (143 ± 10 cps/mg hemoglobin) in the second week and no difference was found at the end of the treatment. At that time, GST and GPx were higher (14 and 24%, respectively) in the Hg group, and Cu,Zn-SOD was lower (54%) compared to control. At the end of the treatment, Cu,Zn-SOD and CAT were higher (43 and 10%, respectively) in the Hg group compared to control (4.6 ± 0.3 U/mg protein; 37 ± 0.9 pmol/mg protein, respectively). TRAP was lower (69%) in the first week compared to control (43.8 ± 1.9 mM Trolox). These data provide evidence that HgCl2 administration is accompanied by systemic oxidative damage in the initial phase of the process, which leads to adaptive changes in the antioxidant reserve, thus decreasing the oxidative injury at the end of 30 days of HgCl2 administration. These results suggest that a preventive treatment with antioxidants would help to avoid oxidative damage in subjects with chronic intoxication.
Resumo:
Nukleotidien ja oligonukleotidien analogeilla on merkittävä rooli virusten aiheuttamien tautien hoidossa. Tämän kaltaiset yhdisteet voivat estää spesifisesti virusten proteiineja tai aktivoida luontaista immuunijärjestelmää, jossa 2-5A:ksi kutsutut lyhyet 2´,5´-sitoutuneet oligomeerit ovat keskeisiä tekijöitä. Nukleotideihin ja oligonukleotideihin pohjautuvien lääkkeiden tehokkuus riippuu pääasiassa aihiolääkestrategiasta, jolla niiden sisäänottoa soluun tehostetaan. Tavanomaisessa aihiolääkestrategiassa negatiivisesti varautuneet fosfaattiryhmät suojataan rasvaliukoisilla biohajoavilla suojaryhmillä, jotta molekyyli läpäisee solukalvon helpommin. Solun sisällä aihiolääke muuttuu aktiiviseksi lääkeaineeksi, kun suojaryhmät irtoavat solun entsyymien, kuten esteraasien vaikutuksesta. Väitöskirjassa arvioitiin esteraasin katalysoiman aihiolääkestrategian soveltuvuutta 2-5A-trimeerille syntetisoimalla kaksi erilaista 2-5A-aihiolääkekandidaattia ja tutkimalla 2-5A:n purkautumista karboksiesteraasi-entsyymin vaikutuksesta. Suojaryhmäsuunnitelma perustui esteraasilabiileihin 2,2-disubstituoituihin asyylioksipropyyliryhmiin ja asyylioksimetyyliryhmiin, joilla suojattiin trimeerien fosfaatti- ja 3´-hydroksyyliryhmät. Tulokset osoittivat, että esteraasilabiilien suojaryhmien irtoaminen 2-5A:sta hidastui merkittävästi, kun yhdisteeseen kertyi negatiivista varausta. Lisäksi suojaryhmien hajotessa muodostui elektrofiilisiä alkyloivia aineita, jotka ovat mahdollisesti toksisia. Näistä syistä johtuen kehitettiin kuusi uudenlaista 2,2,-disubstituoitua 4-asyylitio- 3-oksobutyyliryhmää fosfodiestereiden suojaamiseksi. Suojaryhmät irtoavat sekä esteraasin katalysoimana, että lämpötilan vaikutuksesta. Tämä on hyödyllinen ominaisuus silloin, kun entsyymin affiniteetti negatiivisesti varattuun substraattiin heikkenee. Suojaryhmien hydrolyyttinen ja entsymaattinen stabiilisuus on helposti säädeltävissä, jotta suojauksen purkautumisen nopeus voidaan optimoida. Vapautuneet suojaryhmät eivät ole merkittävästi alkyloivia, sillä niiden ei havaittu alkyloivan glutationia.
Resumo:
This review addresses the mechanisms of methylmercury (MeHg)-induced neurotoxicity, specifically examining the role of oxidative stress in mediating neuronal damage. A number of critical findings point to a central role for astrocytes in mediating MeHg-induced neurotoxicity as evidenced by the following observations: a) MeHg preferentially accumulates in astrocytes; b) MeHg specifically inhibits glutamate uptake in astrocytes; c) neuronal dysfunction is secondary to disturbances in astrocytes. The generation of reactive oxygen species (ROS) by MeHg has been observed in various experimental paradigms. For example, MeHg enhances ROS formation both in vivo (rodent cerebellum) and in vitro (isolated rat brain synaptosomes), as well as in neuronal and mixed reaggregating cell cultures. Antioxidants, including selenocompounds, can rescue astrocytes from MeHg-induced cytotoxicity by reducing ROS formation. We emphasize that oxidative stress plays a significant role in mediating MeHg-induced neurotoxic damage with active involvement of the mitochondria in this process. Furthermore, we provide a mechanistic overview on oxidative stress induced by MeHg that is triggered by a series of molecular events such as activation of various kinases, stress proteins and other immediate early genes culminating in cell damage.