944 resultados para Liapunov convexity theorem
Resumo:
The propositional mu-calculus is a propositional logic of programs which incorporates a least fixpoint operator and subsumes the propositional dynamic logic of Fischer and Ladner, the infinite looping construct of Streett, and the game logic of Parikh. We give an elementary time decision procedure, using a reduction to the emptiness problem for automata on infinite trees. A small model theorem is obtained as a corollary.
Resumo:
The need to make default assumptions is frequently encountered in reasoning about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non-monotonicity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occuring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Resumo:
This paper deals withmodel generation for equational theories, i.e., automatically generating (finite) models of a given set of (logical) equations. Our method of finite model generation and a tool for automatic construction of finite algebras is described. Some examples are given to show the applications of our program. We argue that, the combination of model generators and theorem provers enables us to get a better understanding of logical theories. A brief comparison between our tool and other similar tools is also presented.
Resumo:
It is rigorously proved that the Green's function of a uniform two-dimensional interacting electron gas in a perpendicular magnetic field is diagonal with respect to single-particle states in the Landau gauge. The implication of this theorem is briefly discussed.
Resumo:
The propagation characteristics of fiexural waves in periodic grid structures designed with the idea of phononic crystals are investigated by combining the Bloch theorem with the finite element method. This combined analysis yields phase constant surfaces, which predict the location and the extension of band gaps, as well as the directions and the regions of wave propagation at assigned frequencies. The predictions are validated by computation and experimental analysis of the harmonic responses of a finite structure with 11 × 11 unit cells. The fiexural wave is localized at the point of excitation in band gaps, while the directional behaviour occurs at particular frequencies in pass bands. These studies provide guidelines to designing periodic structures for vibration attenuation.
Resumo:
形式化验证对保证软件的正确性和可靠性具有十分重要的意义.定理机械证明是形式化验证的一个重要研究领域,Isabelle系统是一个被广泛运用的定理证明辅助工具.本文在分析Dijkstra最弱前置谓词理论的基础上,根据PAR方法开发的算法程序循环不变式,提出了一种使用Isabelle定理证明器对算法程序进行机械验证的方法.该方法既克服了传统手工验证过程的繁琐性和易错性等缺点,又达到"提高验证效率和保证算法程序高可信"的目标,具有很好的实用价值.
Resumo:
The discretization size is limited by the sampling theorem, and the limit is one half of the wavelength of the highest frequency of the problem. However, one half of the wavelength is an ideal value. In general, the discretization size that can ensure the accuracy of the simulation is much smaller than this value in the traditional finite element method. The possible reason of this phenomenon is analyzed in this paper, and an efficient method is given to improve the simulation accuracy.
Resumo:
According to the method of path integral quantization for the canonical constrained system in Becchi-Rouet-Stora-Tyutin scheme, the supersymmetric electromagnetic interaction system was quantized. Both the Hamiltonian of the supersymmetric electromagnetic interaction system in phase space and the quantization procedure were simplified. The BRST generator was constructed, and the BRST transformations of supersymmetric fields were gotten; the effective action was calculated, and the generating functional for the Green function was achieved; also, the gauge generator was constructed, and the gauge transformation of the system was obtained. Finally, the Ward-Takahashi identities based on the canonical Noether theorem were calculated, and two relations between proper vertices and propagators were obtained.
Resumo:
Within the framework of Dirac Brueckner-Hartree-Fock (DBHF) approach, we calculate the energy per nucleon, the pressure, the nucleon self-energy, and the single-nucleon energy in the nuclear matter by adopting two different covariant representations for T-matrix. We mainly investigate the influence of different covariant representations on the satisfiable extent of the Hugenholtz-Van Hove (HVH) theorem in the nuclear medium in the framework of DBHF. By adopting the two different covariant representations of T-matrix, the predicted nucleon self-energy shows a quite different momentum and density dependence. Different covariant representations affect remarkably the satisfiable extent of the HVH theorem. By adopting the complete pseudo-vector representation of the T-matrix, HVH theorem is largely violated, which is in agreement with the result in the non-relativistic Brueckner-Hartree-Fock approach and reflects the importance of ground state correlations for single nucleon properties in nuclear medium, whereas by using the pseudoscalar representation, the ground state correlation cannot be shown. It indicates that the complete pseudo-vector presentation is more feasible than the pseudo-scalar one.
Resumo:
In terms of the quantitative causal principle, this paper obtains a general variational principle, gives unified expressions of the general, Hamilton, Voss, Holder, Maupertuis-Lagrange variational principles of integral style, the invariant quantities of the general, Voss, Holder, Maupertuis-Lagrange variational principles are given, finally the Noether conservation charges of the general, Voss, Holder, Maupertuis-Lagrange variational principles axe deduced, and the intrinsic relations among the invariant quantities and the Noether conservation charges of all the integral variational principles axe achieved.
Resumo:
Two new concepts for molecular solids, 'local similarity' and 'boundary-preserving isometry', are defined mathematically and a theorem which relates these concepts is formulated. 'Locally similar' solids possess an identical short-range structure and a 'boundary-preserving isometry' is a new mathematical operation on a finite region of a solid that transforms mathematically a given solid to a locally similar one. It is shown further that the existence of such a 'boundary-preserving isometry' in a given solid has infinitely many 'locally similar' solids as a consequence. Chemical implications, referring to the similarity of X-ray powder patterns and patent registration, are discussed as well. These theoretical concepts, which are first introduced in a schematic manner, are proved to exist in nature by the elucidation of the crystal structure of some diketopyrrolopyrrole (DPP) derivatives with surprisingly similar powder patterns. Although the available powder patterns were not indexable, the underlying crystals could be elucidated by using the new technique of ab initio prediction of possible polymorphs and a subsequent Rietveld refinement. Further ab initio packing calculations on other molecules reveal that 'local crystal similarity' is not restricted to DPP derivatives and should also be exhibited by other molecules such as quinacridones. The 'boundary-preserving isometry' is presented as a predictive tool for crystal engineering purposes and attempts to detect it in crystals of the Cambridge Structural Database (CSD) are reported.