939 resultados para LIM,Nativi digitali,Immigrati digitali,mappa cognitiva


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This book focuses on practical applications for using adult and embryonic stem cells in the pharmaceutical development process. It emphasizes new technologies to help overcome the bottlenecks in developing stem cells as therapeutic agents. A key reference for professionals working in stem cell science, it presents the general principles and methodologies in stem cell research and covers topics such as derivitization and characterization of stem cells, stem cell culture and maintenance, stem cell engineering, applications of high-throughput screening, and stem cell genetic modification with their use for drug delivery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell sheets can be used to produce neo-tissue with mature extracellular matrix. However, extensive contraction of cell sheets remains a problem. We devised a technique to overcome this problem and applied it to tissue engineer a dermal construct. Human dermal fibroblasts were cultured with poly(lactic-co-glycolic acid)-collagen meshes and collagen-hyaluronic acid foams. Resulting cell sheets were folded over the scaffolds to form dermal constructs. Human keratinocytes were cultured on these dermal constructs to assess their ability to support bilayered skin regeneration. Dermal constructs produced with collagen-hyaluronic acid foams showed minimal contraction, while those with poly(lactic-co-glycolic acid)-collagen meshes curled up. Cell proliferation and metabolic activity profiles were characterized with PicoGreen and AlamarBlue assays, respectively. Fluorescent labeling showed high cell viability and F-actin expression within the constructs. Collagen deposition was detected by immunocytochemistry and electron microscopy. Transforming Growth Factor-alpha and beta1, Keratinocyte Growth Factor and Vascular Endothelial Growth Factor were produced at various stages of culture, measured by RT-PCR and ELISA. These results indicated that assimilating cell sheets with mechanically stable scaffolds could produce viable dermal-like constructs that do not contract. Repeated enzymatic treatment cycles for cell expansion is unnecessary, while the issue of poor cell seeding efficiency in scaffolds is eliminated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of medical grade polycaprolactone–tricalcium phosphate (mPCL–TCP) (80:20) scaffolds on primary human alveolar osteoblasts (AOs) were compared with standard tissue-culture plates. Of the seeded AOs, 70% adhered to and proliferated on the scaffold surface and within open and interconnected pores; they formed multi-layered sheets and collagen fibers with uniform distribution within 28 days. Elevation of alkaline phosphatase activity occurred in scaffold–cell constructs independent of osteogenic induction. AO proliferation rate increased and significant decrease in calcium concentration of the medium for both scaffolds and plates under induction conditions were seen. mPCL–TCP scaffolds significantly influenced the AO expression pattern of osterix and osteocalcin (OCN). Osteogenic induction down-regulated OCN at both RNA and protein level on scaffolds (3D) by day 7, and up-regulated OCN in cell-culture plates (2D) by day 14, but OCN levels on scaffolds were higher than on cell-culture plates. Immunocytochemical signals for type I collagen, osteopontin and osteocalcin were detected at the outer parts of scaffold–cell constructs. More mineral nodules were found in induced than in non-induced constructs. Only induced 2D cultures showed nodule formation. mPCL–TCP scaffolds appear to stimulate osteogenesis in vitro by activating a cellular response in AO's to form mineralized tissue. There is a fundamental difference between culturing AOs on 2D and 3D environments that should be considered when studying osteogenesis in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of ultra-thin films as dressings for cutaneous wounds could prove advantageous in terms of better conformity to wound topography and improved vapour transmission. For this purpose, ultra-thin poly(epsilon-caprolactone) (PCL) films of 5-15 microm thickness were fabricated via a biaxial stretching technique. To evaluate their in vivo biocompatibility and feasibility as an external wound dressing, PCL films were applied over full and partial-thickness wounds in rat and pig models. Different groups of PCL films were used: untreated, NaOH-treated, untreated with fibrin, NaOH-treated with perforations, and NaOH-treated with fibrin and S-nitrosoglutathione. Wounds with no external dressings were used as controls. Wound contraction rate, histology and biomechanical analyses were carried out. Wounds re-epithelialized completely at a comparable rate. Formation of a neo-dermal layer and re-epithelialization were observed in all the wounds. A lower level of fibrosis was observed when PCL films were used, compared to the control wounds. Ultimate tensile strength of the regenerated tissue in rats reached 50-60% of that in native rat skin. Results indicated that biaxially-stretched PCL films did not induce inflammatory reactions when used in vivo as a wound dressing and supported the normal wound healing process in full and partial-thickness wounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed a bioreactor vessel design which has the advantages of simplicity and ease of assembly and disassembly, and with the appropriately determined flow rate, even allows for a scaffold to be suspended freely regardless of its weight. This article reports our experimental and numerical investigations to evaluate the performance of a newly developed non-perfusion conical bioreactor by visualizing the flow through scaffolds with 45° and 90° fiber lay down patterns. The experiments were conducted at the Reynolds numbers (Re) 121, 170, and 218 based on the local velocity and width of scaffolds. The flow fields were captured using short-time exposures of 60 µm particles suspended in the bioreactor and illuminated using a thin laser sheet. The effects of scaffold fiber lay down pattern and Reynolds number were obtained and correspondingly compared to results obtained from a computational fluid dynamics (CFD) software package. The objectives of this article are twofold: to investigate the hypothesis that there may be an insufficient exchange of medium within the interior of the scaffold when using our non-perfusion bioreactor, and second, to compare the flows within and around scaffolds of 45° and 90° fiber lay down patterns. Scaffold porosity was also found to influence flow patterns. It was therefore shown that fluidic transport could be achieved within scaffolds with our bioreactor design, being a non-perfusion vessel. Fluid velocities were generally same of the same or one order lower in magnitude as compared to the inlet flow velocity. Additionally, the 90° fiber lay down pattern scaffold was found to allow for slightly higher fluid velocities within, as compared to the 45° fiber lay down pattern scaffold. This was due to the architecture and pore arrangement of the 90° fiber lay down pattern scaffold, which allows for fluid to flow directly through (channel-like flow).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The osteogenic potential of human adipose-derived precursor cells seeded on medical-grade polycaprolactone-tricalcium phosphate scaffolds was investigated in this in vivo study. Three study groups were investigated: (1) induced—stimulated with osteogenic factors only after seeding into scaffold; (2) preinduced—induced for 2 weeks before seeding into scaffolds; and (3) uninduced—cells without any introduced induction. For all groups, scaffolds were implanted subcutaneously into the dorsum of athymic rats. The scaffold/cell constructs were harvested at the end of 6 or 12 weeks and analyzed for osteogenesis. Gross morphological examination using scanning electron microscopy indicated good integration of host tissue with scaffold/cell constructs and extensive tissue infiltration into the scaffold interior. Alizarin Red histology and immunostaining showed a heightened level of mineralization and an increase in osteonectin, osteopontin, and collagen type I protein expression in both the induced and preinduced groups compared with the uninduced groups. However, no significant differences were observed in these indicators when compared between the induced and preinduced groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human mesenchymal stem cells (hMSCs) possess great therapeutic potential for the treatment of bone disease and fracture non-union. Too often however, in vitro evidence alone of the interaction between hMSCs and the biomaterial of choice is used as justification for continued development of the material into the clinic. Clearly for hMSC-based regenerative medicine to be successful for the treatment of orthopaedic trauma, it is crucial to transplant hMSCs with a suitable carrier that facilitates their survival, optimal proliferation and osteogenic differentiation in vitro and in vivo. This motivated us to evaluate the use of polycaprolactone-20% tricalcium phosphate (PCL-TCP) scaffolds produced by fused deposition modeling for the delivery of hMSCs. When hMSCs were cultured on the PCL-TCP scaffolds and imaged by a combination of phase contrast, scanning electron and confocal laser microscopy, we observed five distinct stages of colonization over a 21-day period that were characterized by cell attachment, spreading, cellular bridging, the formation of a dense cellular mass and the accumulation of a mineralized extracellular matrix when induced with osteogenic stimulants. Having established that PCL-TCP scaffolds are able to support hMSC proliferation and osteogenic differentiation, we next tested the in vivo efficacy of hMSC-loaded PCL-TCP scaffolds in nude rat critical-sized femoral defects. We found that fluorescently labeled hMSCs survived in the defect site for up to 3 weeks post-transplantation. However, only 50% of the femoral defects treated with hMSCs responded favorably as determined by new bone volume. As such, we show that verification of hMSC viability and differentiation in vitro is not sufficient to predict the efficacy of transplanted stem cells to consistently promote bone formation in orthotopic defects in vivo.