939 resultados para Implementation models
Resumo:
Quality, as well as project success, in construction projects should be capable of being regarded as the fulfillment of expectation of those contributors and stakeholders involved in such projects. Although a significant amount of quality practices have been introduced within the industry, establishment and attainment of reasonable levels of quality internationally in construction projects continues to be an ongoing problem. To date, some investigation into the introduction and improvement of quality practices and stakeholder management in the construction industry has been accomplished independently, but so far no major studies have been completed that examine comprehensively how quality management practices that particularly concentrate on the stakeholders’ perspective of quality can be used to contribute to final project quality outcomes. This paper aims to examine the process for development of a framework for better involvement of stakeholders in quality planning and practices and subsequently to contribute to higher quality outcomes within construction projects. Through extensive literature review it highlights various perceptions of quality, categorizes quality issues with particular focus on benefits and shortcomings and also examines stakeholders’ viewpoint of project quality in order to promote the improvement of outcomes throughout a project’s lifecycle. It proposes a set of arranged information as a basis for development of prospective framework which ultimately aims to improve project quality outcomes. The subsequent framework that will be developed from this research will provide project managers and owners with the required information and strategic direction to achieve their own and their stakeholders’ targets for implementation of quality practices and achievement of high quality outcomes on their future projects.
Resumo:
Markov chain Monte Carlo (MCMC) estimation provides a solution to the complex integration problems that are faced in the Bayesian analysis of statistical problems. The implementation of MCMC algorithms is, however, code intensive and time consuming. We have developed a Python package, which is called PyMCMC, that aids in the construction of MCMC samplers and helps to substantially reduce the likelihood of coding error, as well as aid in the minimisation of repetitive code. PyMCMC contains classes for Gibbs, Metropolis Hastings, independent Metropolis Hastings, random walk Metropolis Hastings, orientational bias Monte Carlo and slice samplers as well as specific modules for common models such as a module for Bayesian regression analysis. PyMCMC is straightforward to optimise, taking advantage of the Python libraries Numpy and Scipy, as well as being readily extensible with C or Fortran.
Resumo:
Gaining invariance to camera and illumination variations has been a well investigated topic in Active Appearance Model (AAM) fitting literature. The major problem lies in the inability of the appearance parameters of the AAM to generalize to unseen conditions. An attractive approach for gaining invariance is to fit an AAM to a multiple filter response (e.g. Gabor) representation of the input image. Naively applying this concept with a traditional AAM is computationally prohibitive, especially as the number of filter responses increase. In this paper, we present a computationally efficient AAM fitting algorithm based on the Lucas-Kanade (LK) algorithm posed in the Fourier domain that affords invariance to both expression and illumination. We refer to this as a Fourier AAM (FAAM), and show that this method gives substantial improvement in person specific AAM fitting performance over traditional AAM fitting methods.
Resumo:
Business practices vary from one company to another and business practices often need to be changed due to changes of business environments. To satisfy different business practices, enterprise systems need to be customized. To keep up with ongoing business practice changes, enterprise systems need to be adapted. Because of rigidity and complexity, the customization and adaption of enterprise systems often takes excessive time with potential failures and budget shortfall. Moreover, enterprise systems often drag business behind because they cannot be rapidly adapted to support business practice changes. Extensive literature has addressed this issue by identifying success or failure factors, implementation approaches, and project management strategies. Those efforts were aimed at learning lessons from post implementation experiences to help future projects. This research looks into this issue from a different angle. It attempts to address this issue by delivering a systematic method for developing flexible enterprise systems which can be easily tailored for different business practices or rapidly adapted when business practices change. First, this research examines the role of system models in the context of enterprise system development; and the relationship of system models with software programs in the contexts of computer aided software engineering (CASE), model driven architecture (MDA) and workflow management system (WfMS). Then, by applying the analogical reasoning method, this research initiates a concept of model driven enterprise systems. The novelty of model driven enterprise systems is that it extracts system models from software programs and makes system models able to stay independent of software programs. In the paradigm of model driven enterprise systems, system models act as instructors to guide and control the behavior of software programs. Software programs function by interpreting instructions in system models. This mechanism exposes the opportunity to tailor such a system by changing system models. To make this true, system models should be represented in a language which can be easily understood by human beings and can also be effectively interpreted by computers. In this research, various semantic representations are investigated to support model driven enterprise systems. The significance of this research is 1) the transplantation of the successful structure for flexibility in modern machines and WfMS to enterprise systems; and 2) the advancement of MDA by extending the role of system models from guiding system development to controlling system behaviors. This research contributes to the area relevant to enterprise systems from three perspectives: 1) a new paradigm of enterprise systems, in which enterprise systems consist of two essential elements: system models and software programs. These two elements are loosely coupled and can exist independently; 2) semantic representations, which can effectively represent business entities, entity relationships, business logic and information processing logic in a semantic manner. Semantic representations are the key enabling techniques of model driven enterprise systems; and 3) a brand new role of system models; traditionally the role of system models is to guide developers to write system source code. This research promotes the role of system models to control the behaviors of enterprise.
Resumo:
The number of software vendors offering ‘Software-as-a-Service’ has been increasing in recent years. In the Software-as-a-Service model software is operated by the software vendor and delivered to the customer as a service. Existing business models and industry structures are challenged by the changes to the deployment and pricing model compared to traditional software. However, the full implications on the way companies create, deliver and capture value are not yet sufficiently analyzed. Current research is scattered on specific aspects, only a few studies provide a more holistic view of the impact from a business model perspective. For vendors it is, however, crucial to be aware of the potentially far reaching consequences of Software-as-a-Service. Therefore, a literature review and three exploratory case studies of leading software vendors are used to evaluate possible implications of Software-as-a-Service on business models. The results show an impact on all business model building blocks and highlight in particular the often less articulated impact on key activities, customer relationship and key partnerships for leading software vendors and show related challenges, for example, with regard to the integration of development and operations processes. The observed implications demonstrate the disruptive character of the concept and identify future research requirements.
Resumo:
As the societal awareness on sustainability is gaining momentum worldwide, the higher education sector is expected to take the lead in education, research and the promotion of sustainable development. Universities have the diversity of skills and knowledge to explore new concepts and issues, the academic freedom to offer unbiased observations, and the capacity to engage in experimentation for solutions. There is a global trend that universities have realized and responded to sustainability challenge. By adopting green technologies, buildings on university campuses have the potential to offer highly productive and green environments for a quality learning experience for students, while minimising environmental impacts. Despite the potential benefits and metaphorical link to sustainability, few universities have moved towards implementing Green Roof and Living Wall on campuses widely, which have had more successful applications in commercial and residential buildings. Few past research efforts have examined the fundamental barriers to the implementation of sustainable projects on campuses from organizational level. To address this deficiency, an on-going research project is undertaken by Queensland University of Technology in Australia. The research is aimed at developing a comprehensive framework to facilitate better decision making for the promotion of Green Roof and Living Wall application on campuses. It will explore and highlight organizational factors as well as investigate and emphasize project delivery issues. Also, the critical technical indicators for Green Roof and Living Wall implementation will be identified. The expected outcome of this research has the potential to enhance Green Roof and Living Wall delivery in Australian universities, as a vital step towards realizing sustainability in higher education sectors.
Resumo:
Hybrid system representations have been applied to many challenging modeling situations. In these hybrid system representations, a mixture of continuous and discrete states is used to capture the dominating behavioural features of a nonlinear, possible uncertain, model under approximation. Unfortunately, the problem of how to best design a suitable hybrid system model has not yet been fully addressed. This paper proposes a new joint state measurement relative entropy rate based approach for this design purpose. Design examples and simulation studies are presented which highlight the benefits of our proposed design approaches.
Resumo:
Bistability arises within a wide range of biological systems from the λ phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks.
Resumo:
Problem Despite widespread acceptance of the Ottawa ankle rules for assessment of acute ankle injuries, their application varies considerably. Design Before and after study. Background and setting Emergency departments of a tertiary teaching hospital and a community hospital in Australia. Key measures for improvement Documentation of the Ottawa ankle rules, proportion of patients referred for radiography, proportion of radiographs showing a fracture. Strategies for change Education, a problem specific radiography request form, reminders, audit and feedback, and using radiographers as “gatekeepers.” Effects of change Documentation of the Ottawa ankle rules improved from 57.5% to 94.7% at the tertiary hospital, and 51.6% to 80.8% at the community hospital (P<0.001 for both). The proportion of patients undergoing radiography fell from 95.8% to 87.2% at the tertiary hospital, and from 91.4% to 78.9% at the community hospital (P<0.001 for both). The proportion of radiographs showing a fracture increased from 20.4% to 27.1% at the tertiary hospital (P=0.069), and 15.2% to 27.2% (P=0.002) at the community hospital. The missed fracture rate increased from 0% to 2.9% at the tertiary hospital and from 0% to 1.6% at the community hospital compared with baseline (P=0.783 and P=0.747). Lessons learnt Assessment of case note documentation has limitations. Clinician groups seem to differ in their capacity and willingness to change their practice. A multifaceted change strategy including a problem specific radiography request form can improve the selection of patients for radiography.