972 resultados para Immobilization in polyethersulfone membranes
Resumo:
Purpose. To study epidermal and polyethylene membrane penetration and retention of the sunscreen benzophenone-3 (BP) from a range of single solvent vehicles and evaluate solvent effects on permeability parameters. Methods. The solubility of BP was measured in a number of solvents. Penetration of BP across human epidermis and high density polyethylene (HDPE) membranes was studied from 50% saturated solutions in each solvent. Results. Maximal BP fluxes from the solvents across the two membranes varied widely. Highest fluxes were observed from 90% ethanol (EtOH) for epidermis and from isopropyl myristate (IPM) and C12-15 benzoate alcohols (C12-15 BA) for HDPE membrane. Both the flux and estimated permeability coefficient and skin-vehicle partitioning of BP appeared to be related to the vehicle solubility parameter (delta(v)). The major effects of solvents on BP flux appear to be via changes in BP diffusivity through the membranes. Conclusions. Minimal penetration of sunscreens such as BP is best achieved by choosing vehicles with a delta(v) substantially different to the solubility parameter of the membrane.
Resumo:
Mechanically skinned skeletal muscle fibres from rat and toad were exposed to the permeabilizing agents beta-escin and saponin. The effects of these agents on the sealed transverse tubular system (t-system) and sarcoplasmic reticulum (SR) were examined by looking at changes in the magnitude of the force responses to t-system depolarization, the time course of the fluorescence of fura-2 trapped in the sealed t-system, and changes in the magnitude of caffeine-induced contractures following SR loading with Ca2+ under defined conditions. In the presence of 2 mu g ml(-1) beta-escin and saponin, the response to t-system depolarization was not completely abolished, decreasing to a plateau, and a large proportion of fura-2 remained in the sealed t-system. At 10 mu g ml(-1), both agents abolished the ability of both rat and toad preparations to respond to t-system depolarization after 3 min of exposure, but a significant amount of fura-2 remained in sealed t-tubules even after exposure to 100 mu g ml(-1) beta-escin and saponin for 10 min. beta-Escin took longer than saponin to reduce the t-system depolarizations and fura-2 content of the sealed t-system to a similar level. The ability of the SR to load Ca2+ was reduced to a lower level after treatment with beta-escin than saponin. This direct effect on the SR occurred at much lower concentrations for rat (2 mu g ml(-1) beta-escin and 10 mu g ml(-1) saponin) than toad (10 mu g ml(-1) beta-escin and 150 mu g ml(-1) saponin). The reverse order in sensitivities to beta-escin and saponin of t-system and SR membranes indicates that the mechanisms of action of beta-escin and saponin are different in the two types of membrane. In conclusion, this study shows that: (1) beta-escin has a milder action on the surface membrane than saponin; (2) beta-escin is a more potent modifier of SR function; (3) simple permeabilization of membranes is not sufficient to explain the effects of beta-escin and saponin on muscle membranes; and (4) the t-system network within muscle fibres is not a homogeneous compartment.
Resumo:
High performance composite membranes based on molecular sieving silica (MSS) were synthesized using sols containing silicon co-polymers (methyltriethoxysilane and tetraethylorthosilicate). Alpha alumina supports were treated with hydrochloric acid prior to sol deposition. Permselectivity of CO2 over CH4 as high as 16.68 was achieved whilst permeability of CO2 up to 36.7 GPU (10(-6) cm(3) (STP) cm(-2) . s(-1) . cm Hg-1) was measured. The best membrane's permeability was finger printed during various stages of the synthesis process showing an increase in CO2/CH4 permselectivity by over 25 times from initial support condition (no membrane film) to the completion of pore structure tailoring. Transport measurement results indicate that the membrane pretreated with HCl has highest permselectivity and permeation rate. In particular, there is a definite cut-off pore size between 3.3 and 3.4 angstroms which is just below the kinetic diameters of Ar and CH4. This demonstrates that the mechanism for the separation in the prepared composite membrane is molecular sieving (activated diffusion), rather than Knudsen diffusion.
Resumo:
The morphological development of the photoreceptor mosaic was followed by light and electron microscopy in a specific region of dorsal retina of the black bream, Acanthopagrus butcheri (Sparidae, Teleostei), from hatching to eight weeks of age. The retina was differentiated when the larvae reached a total length of 3 mm (3-5 days posthatch). Single cones, arranged in tightly packed rows, were the only morphologically distinct type of photoreceptor present until the larvae were 6 mm (day 15) in standard length (SL). At this time, the rad nuclei had become differentiated and the ellipsoids of selected cones began to form subsurface cisternae along neighbouring cone membranes. In this way, double, triple, quadruple, and occasionally photoreceptor chains of up to 10 cones were formed. At 8 mm SL, there was little apparent order in the photoreceptor mosaic. However, concomitant with subsequent growth, quadruple and other multiple cone receptors disappeared, with the exception of the triple cones, which gradually reduced in both number and retinal coverage to be restricted to central retina by 15 mm SL (days 40-55). Following this stage, the arrangement of double and single cones peripheral to the region of triple cones in dorsal retina was transformed into the adult pattern of a regular mosaic of four double cones surrounding a single cone. These results demonstrate that an established photoreceptor mosaic of rows of single cones can be reorganised to form a regular square mosaic composed of single and double cones. J. Comp. Neural. 412:203-217, 1999. (C) 1999 Wiley-Liss, Inc.
Resumo:
Leaves of the subtropical understorey shrub Schefflera arboricola Hayata growing in full sunlight had higher specific leaf weight, higher chlorophyll a/b ratios, lower total chlorophyll content and a threefold higher xanthophyll cycle pigment content than leaves growing in a naturally shaded, but sunfleck-punctuated, environment. A number of measurements, all made in situ and during natural day/night cycles, were taken as follows: current photochemical capacity (F-v/F-m after 10 min dark-adaptation), size and epoxidation state of the xanthophyll cycle, CO2 gas exchange and determination of the D1 synthesis rate. In sun leaves the lowest daily F-v/F-m was found to be approximately 0.6, the change from maximum correlating with an increase in zeaxanthin. Daily changes in zeaxanthin were partly due to de novo synthesis and turnover. We suggest that sun leaves can dissipate most of the excess light energy absorbed safely via the photoprotective xanthophyll cycle. D1 synthesis rates did not correlate with photosynthetic photon flux density or F-v/F-m. The shade leaves had high F-v/F-m values and constant photosynthetic rates throughout the day except during sunflecks, when photosynthetic rates increased and D1 synthesis accelerated, all without a substantial decrease in F-v/F-m. It seems that leaves of S. arboricola adapted to natural shade conditions can use sunflecks to contribute significantly to their productivity. The third leaf type investigated was from greenhouse-grown plants of S. arboricola after exposure to full sunlight. These leaves showed a rapid and large reduction in F-v/F-m (to 0.3), which neither correlated with zeaxanthin formation nor recovered within the same day. From long-term effects following full sunlight exposure of greenhouse-grown plants we suggest that this F-v/F-m reduction actually reflects photodestruction.
Resumo:
Induction of apoptosis in cells by TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF family, is believed to be regulated by expression of two death-inducing and two inhibitory (decoy) receptors on the cell surface. In previous studies we found no correlation between expression of decoy receptors and susceptibility of human melanoma cells to TRAIL-induced apoptosis, In view of this, we studied the localization of the receptors in melanoma cells by confocal microscopy to better understand their function. We show that the death receptors TRAIL-R1 and R2 are located in the trans-Golgi network, whereas the inhibitory receptors TRAIL-R3 and -R4 are located in the nucleus. After exposure to TRAIL, TRAIL-R1 and -R2 are internalized into endosomes, whereas TRAIL-R3 and -R4 undergo relocation from the nucleus to the cytoplasm and cell membranes. This movement of decoy receptors was dependent on signals from TRAIL-R1 and -R2, as shown by blocking experiments with Abs to TRAIL-R1 and -R2, The location of TRAIL-R1, -R3, and -R4 in melanoma cells transfected with cDNA for these receptors was similar to that in nontransfected cells, Transfection of TRAIL-R3 and -R4 increased resistance of the melanoma lines to TRAIL-induced apoptosis even in melanoma lines that naturally expressed these receptors. These results indicate that abnormalities in decoy receptor location or function may contribute to sensitivity of melanoma to TRAIL-induced apoptosis and suggest that further studies are needed on the functional significance of their nuclear location and TRAIL-induced movement within cell.
Resumo:
NMR solution structures are reported for two mutants (K16E, K16F) of the soluble amyloid beta peptide A beta(1-28). The structural effects of these mutations of a positively charged residue to anionic and hydrophobic residues at the alpha-secretase cleavage site (Lys16-Leu17) were examined in the membrane-simulating solvent aqueous SDS micelles. Overall the three-dimensional structures were similar to that for the native A beta(1-28) sequence in that they contained an unstructured N-terminus and a helical C-terminus. These structural elements are similar to those seen in the corresponding regions of full-length A beta peptides A beta(1-40) and A beta(1-42), showing that the shorter peptides are valid model systems. The K16E mutation, which might be expected to stabilize the macrodipole of the helix, slightly increased the helix length (residues 13-24) relative to the K16F mutation, which shortened the helix to between residues 16 and 24. The observed sequence-dependent control over conformation in this region provides an insight into possible conformational switching roles of mutations in the amyloid precursor protein from which A beta peptides are derived. In addition, if conformational transitions from helix to random coil to sheet precede aggregation of A beta peptides in vivo, as they do in vitro, the conformation-inducing effects of mutations at Lys16 may also influence aggregation and fibril formation. (C) 2000 Academic Press.
Resumo:
Background-In adult human heart, both beta(1)- and beta(2)-adrenergic receptors mediate hastening of relaxation; however, it is unknown whether this also occurs in infant heart. We compared the effects of stimulation of beta(1)- and beta(2)-adrenergic receptors on relaxation and phosphorylation of phospholamban and troponin I in ventricle obtained from infants with tetralogy of Fallot. Methods and Results-Myocardium dissected from the right ventricular outflow tract of 27 infants (age range 2-1/2 to 35 months) with tetralogy of Fallot was set up to contract 60 times per minute. Selective stimulation of beta(1)-adrenergic receptors with (-)-norepinephrine (NE) and beta(2)-adrenergic receptors with (-)-epinephrine (EPI) evoked phosphorylation of phospholamban (at serine-16 and threonine-17) and troponin I and caused concentration-dependent increases in contractile force (-log EC50 [mol/L] NE 5.5+/-0.1, n=12; -EPI 5.6+/-0.1, n=13 patients), hastening of the time to reach peak force (-log EC50 [mol/L] NE 5.8+/--0.2; EPI 5.8+/-0.2) and 50% relaxation (-log EC50 [mol/L] NE 5.7+/-0.2: EPI 5.8+/-0.1), Ventricular membranes from Fallot infants, labeled with (-)-[I-125]-cyanopindolol, revealed a greater percentage of beta(1)- (71%) than beta(2)-adrenergic receptors (29%). Binding of (-)-epinephrine to beta(2)-receptors underwent greater GTP shifts than binding of (-)-norepinephrine to beta(1)-receptors. Conclusions-Despite their low density, beta(2)-adrenergic receptors are nearly as effective as beta(1)-adrenergic receptors of infant Fallot ventricle in enhancing contraction, relaxation, and phosphorylation of phospholamban and troponin I, consistent with selective coupling to G(s)-protein.
Resumo:
We have identified truncating mutations in the human DLG3 ( neuroendocrine dlg) gene in 4 of 329 families with moderate to severe X-linked mental retardation. DLG3 encodes synapse-associated protein 102 (SAP102), a member of the membrane-associated guanylate kinase protein family. Neuronal SAP102 is expressed during early brain development and is localized to the postsynaptic density of excitatory synapses. It is composed of three amino-terminal PDZ domains, an src homology domain, and a carboxyl-terminal guanylate kinase domain. The PDZ domains interact directly with the NR2 subunits of the NMDA glutamate receptor and with other proteins responsible for NMDA receptor localization, immobilization, and signaling. The mutations identified in this study all introduce premature stop codons within or before the third PDZ domain, and it is likely that this impairs the ability of SAP102 to interact with the NMDA receptor and/or other proteins involved in downstream NMDA receptor signaling pathways. NMDA receptors have been implicated in the induction of certain forms of synaptic plasticity, such as long-term potentiation and long-term depression, and these changes in synaptic efficacy have been proposed as neural mechanisms underlying memory and learning. The disruption of NMDA receptor targeting or signaling, as a result of the loss of SAP102, may lead to altered synaptic plasticity and may explain the intellectual impairment observed in individuals with DLG3 mutations.
Resumo:
A xylanase was cloned from Aspergillus niveus and successfully expressed in Aspergillus nidulans (XAN). The full-length gene consisted of 890 bp and encoded 275 mature amino acids with a calculated mass of 31.3 kDa. The deduced amino acid sequence was highly homologous with the xylanase belonging to family 11 of the glycoside hydrolases. The recombinant protein was purified to electrophoretic homogeneity by anion-exchange chromatography and gel filtration. The optima of pH and temperature for the recombinant enzyme were 5.0 and 65 degrees C, respectively. The thermal stability of the recombinant xylanase was extremely improved by covalent immobilization on glyoxyl agarose with 91.4% of residual activity after 180 min at 60 degrees C, on the other hand, the free xylanase showed a half-life of 9.9 min at the same temperature. Affinity chromatography on Concanavalin A- and Jacalin-agarose columns followed by SDS-PAGE analyses showed that the XAN has O- and N-glycans. XAN promotes hydrolysis of xylan resulting in xylobiose, xylotriose and xylotetraose. Intermediate degradation of xylan resulting in xylo-oligomers is appealing for functional foods as the beneficial effect of oligosaccharides on gastrointestinal micro flora includes preventing proliferation of pathogenic intestinal bacteria and facilitates digestion and absorption of nutrients. (C) 2011 Elsevier Ltd. All rights reserved.
Calcium Carbonate Particle Growth Depending on Coupling among Adjacent Layers in Hybrid LB/LbL Films
Resumo:
There are practical and academic situations that justify the study of calcium carbonate crystallization and especially of systems that are associated with organic matrices and a confined medium. Despite the fact that many different matrices have been studied, the use of well-behaved, thin organic films may provide new knowledge about this system. In this work, we have studied the growth of calcium carbonate particles on well-defined organic matrices that were formed by layer-by-layer (LbL) polyelectrolyte films deposited on phospholipid Langmuir-Blodgett films (LB). We were able to change the surface electrical charge density of the LB films by changing the proportions of a negatively charged lipid, the sodium salt of dimyristoyl-sn-glycero-phosphatidyl acid (DMPA), and a zwitterionic lipid. dimyristoyl-sn-glycero-phosphatidylethanolamine (DMPE). This affects the subsequent polyelectrolyte LbL film deposition, which also changes the the nature of the bonding (electrostatic interaction or hydrogen bonding). This approach allowed for the formation of calcium carbonate particles of different final shapes, roughnesses, and sizes. The masses of deposited lipids, polyelectrolytes, and calcium cabonate were quantified by the quartz crystal microbalance technique. The structures of obtained particles were analyzed by scanning electron microscopy.
Resumo:
Photodynamic therapy (PDT) for cancer is a therapeutic modality in the treatment of tumors in which visible light is used to activate a photosensitizer. Cell membranes have been identified as an important intracellular target for singlet oxygen produced during the photochemical pathway. This study analyzed the cytotoxicity in specific cellular targets of a photosensitizer used in PDT in vitro. The photosensitizing effects of chloroaluminum phthalocyanine liposomal were studied on the mitochondria, cytoskeleton and endoplasmic reticulum of HeLa cells. Cells were irradiated with a diode laser working at 670 nm, energy density of 4.5 J/cm(2) and power density of 45 mW/cm(2). Fluorescence microscopic analysis of the mitochondria showed changes in membrane potential. After PDT treatment, the cytoskeleton and endoplasmic reticulum presented basic alterations in distribution. The combined effect of AlPHCl liposomal and red light in the HeLa cell line induced photodamage to the mitochondria, endoplasmic reticulum and actin filaments in the cytoskeleton. (c) 2008 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.
Resumo:
Surface pressure (pi)-molecular area (A) curves were used to characterize the packing of pseudo-ternary mixed Langmuir monolayers of egg phosphatidylcholine (EPC), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and L-alpha-dioleoyl phosphatidylethanolamine (DOPE). This pseudo-ternary mixture EPC/DOPE/DOTAP has been successfully employed in liposome formulations designed for DNA non-viral vectors. Pseudo-binary mixtures were also studied as a control. Miscibility behavior was inferred from pi-A curves applying the additivity rule by calculating the excess free energy of mixture (Delta G(Exc)). The interaction between the lipids was also deduced from the surface compressional modulus (C(s)(-1)). The deviation from ideality shows dependence on the lipid polar head type and monolayer composition. For lower DOPE concentrations, the forces are predominantly attractive. However, if the monolayer is DOPE rich, the DOTAP presence disturbs the PE-PE intermolecular interaction and the net interaction is then repulsive. The ternary monolayer EPC/DOPE/DOTAP presented itself in two configurations, modulated by the DOPE content, in a similar behavior to the DOPE/DOTAP monolayers. These results contribute to the understanding of the lipid interactions and packing in self-assembled systems associated with the in vitro and in vivo stability of liposomes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Although lacking catalytic activity, the Lys49-PLA(2)s damage artificial membranes by a Ca2+-independent mechanism, and demonstrate a potent bactericidal effect. The relationship between the membrane-damaging activity and bactericidal effect of bothropstoxin-I (BthTx-1), a Lys49-PLA(2) from the venom of Bothrops jararacussu, was evaluated for the wildtype protein and a series of site-directed mutants in the active site and C-terminal regions of the protein. The membrane permeabilization effect against the inner and outer membranes of Escherichia coli K12 was evaluated by fluorescence changes of Sytox Green and N-phenyl-N-naphthylamine, respectively. With the exception of H48Q, all mutants reduced the bactericidal activity, which correlated with a reduction of the permeabilization effect both against the inner bacterial membrane. No significant differences in the permeabilization of the bacterial outer membrane were observed between the native, wild-type recombinant and mutant proteins. These results suggest different permeabilization mechanisms against the inner and outer bacterial membranes. Furthermore, the structural determinants of bacterial inner membrane damage identified in this study correlate with those previously observed for artificial membrane permeabilization, suggesting that a common mechanism of membrane damage underlies the two effects. (C) 2007 Elsevier Ltd. All rights reserved.