951 resultados para Imaging, Three-Dimensional
Resumo:
This paper is novel andreports on the in vitro establishment of 3-D cultures of human osteoblasts. These were evaluated for protein markers of bone cells. Sequentially alkaline phosphatase, calcium incorporation for matrix mineralisation and then finally osteocalcin expression were detected in cultures. The extracellular matrix was composed of type 1 collagen and as it mineralised, needle shaped crystals were often associated with matrix vesicles initiating mineralisation. In vivo implantation in nude mice showed progression of mineralisation from the inner region outward with peripheral cells in a non-mineralised matrix. Host vessels invaded the implanted cell area. The research has relevance to musculoskeletal tissue engineering.
Resumo:
We report on the fabrication and optical characterization of a three-dimensional (3D) photonic crystal on the basis of macroporous silicon. The structure consists of a 2D array of air pores in silicon whose diameter is varied (modulated) periodically with depth. The bandstructure of the resulting 3D hexagonal photonic crystal is calculated and compared with transmission measurements. The described structure allows to adjust the dispersion relation along the pore axis almost independently from the dispersion relation in the plane perpendicular to the pore axis.
Resumo:
Three-dimensional photonic crystals based on macroporous silicon are fabricated by photoelectrochemical etching and subsequent focused-ion-beam drilling. Reflection measurements show a high reflection in the range of the stopgap and indicate the spectral position of the complete photonic band gap. The onset of diffraction which might influence the measurement is discussed.
Three-dimensional reconstruction of perineural invasion in carcinoma of the extrahepatic bile ducts.
Resumo:
We report the experimental measurement of domains in single- crystal nanocolumns of ferroelectric BaTiO3, together with a theory of domain size scaling in three- dimensional structures which explains the observations.
Resumo:
We present results from three-dimensional protein folding simulations in the HP-model on ten benchmark problems. The simulations are executed by a simulated annealing-based algorithm with a time-dependent cooling schedule. The neighbourhood relation is determined by the pull-move set. The results provide experimental evidence that the maximum depth D of local minima of the underlying energy landscape can be upper bounded by D < n(2/3). The local search procedure employs the stopping criterion (In/delta)(D/gamma) where m is an estimation of the average number of neighbouring conformations, gamma relates to the mean of non-zero differences of the objective function for neighbouring conformations, and 1-delta is the confidence that a minimum conformation has been found. The bound complies with the results obtained for the ten benchmark problems. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A modification of liquid source misted chemical deposition process (LSMCD) with heating mist and substrate has developed, and this enabled to control mist penetrability and fluidity on sidewalls of three-dimensional structures and ensure step coverage. A modified LSMCD process allowed a combinatorial approach of Pb(Zr,Ti)O-3 (PZT) thin films and carbon nanotubes (CNTs) toward ultrahigh integration density of ferroelectric random access memories (FeRAMs). The CNTs templates were survived during the crystallization process of deposited PZT film onto CNTs annealed at 650 degrees C in oxygen ambient due to a matter of minute process, so that the thermal budget is quite small. The modified LSMCD process opens up the possibility to realize the nanoscale capacitor structure of ferroelectric PZT film with CNTs electrodes toward ultrahigh integration density FeRAMs.
Resumo:
CO hydrogenation is used as a model system to understand why multiphase catalysts are chemically important in heterogeneous catalysis. By including both adsorption and subsequent surface reactions, kinetic equations are derived with two fundamental properties, the chemisorption energies of C and O (Delta H-C and Delta H-O, respectively). By plotting the activity against Delta H-C and Delta H-O, a 3-D volcano surface is obtained. Because of the constraint between Delta H-C and Delta H-O on monophase systems, a maximum can be achieved. However, if multiphase systems are used, such a constraint can be released and the global maximum may be achieved.
Resumo:
Colourless crystals of [Hg-2(Mmt)(Dmt)(2)](NO3)(H2O) were obtained from a reaction of mercuric nitrate with nionomethyl- and dimethyl-1,2.4-triazolate (Mmt(-) and Dmt(-), respectively). In the crystal structure (monoclinic, C2/c (no. 15), a = 2579.4(4) b = 1231.1(2), c = 1634.8(2) pm, beta = 128.32(1)degrees V = 4073.3(11).10(6).pm(3): Z = 8, R-1 [I-0 > 2 sigma(I-0)]: 0.0355), half of the mercuric ions are essentially two-coordinate (Hg-N: 210-215 pm), the other half are tetrahedrally surrounded by N-donor atoms (Hg-N: 221, 225 pm) of the Mmt(-) and Dmt(-) anions. These three-N ligands construct a three-dimensional framework.