926 resultados para Image processing -- Digital techniques -- Mathematical models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today, most conventional surveillance networks are based on analog system, which has a lot of constraints like manpower and high-bandwidth requirements. It becomes the barrier for today's surveillance network development. This dissertation describes a digital surveillance network architecture based on the H.264 coding/decoding (CODEC) System-on-a-Chip (SoC) platform. The proposed digital surveillance network architecture includes three major layers: software layer, hardware layer, and the network layer. The following outlines the contributions to the proposed digital surveillance network architecture. (1) We implement an object recognition system and an object categorization system on the software layer by applying several Digital Image Processing (DIP) algorithms. (2) For better compression ratio and higher video quality transfer, we implement two new modules on the hardware layer of the H.264 CODEC core, i.e., the background elimination module and the Directional Discrete Cosine Transform (DDCT) module. (3) Furthermore, we introduce a Digital Signal Processor (DSP) sub-system on the main bus of H.264 SoC platforms as the major hardware support system for our software architecture. Thus we combine the software and hardware platforms to be an intelligent surveillance node. Lab results show that the proposed surveillance node can dramatically save the network resources like bandwidth and storage capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor networks are emerging as effective tools in the gathering and dissemination of data. They can be applied in many fields including health, environmental monitoring, home automation and the military. Like all other computing systems it is necessary to include security features, so that security sensitive data traversing the network is protected. However, traditional security techniques cannot be applied to wireless sensor networks. This is due to the constraints of battery power, memory, and the computational capacities of the miniature wireless sensor nodes. Therefore, to address this need, it becomes necessary to develop new lightweight security protocols. This dissertation focuses on designing a suite of lightweight trust-based security mechanisms and a cooperation enforcement protocol for wireless sensor networks. This dissertation presents a trust-based cluster head election mechanism used to elect new cluster heads. This solution prevents a major security breach against the routing protocol, namely, the election of malicious or compromised cluster heads. This dissertation also describes a location-aware, trust-based, compromise node detection, and isolation mechanism. Both of these mechanisms rely on the ability of a node to monitor its neighbors. Using neighbor monitoring techniques, the nodes are able to determine their neighbors’ reputation and trust level through probabilistic modeling. The mechanisms were designed to mitigate internal attacks within wireless sensor networks. The feasibility of the approach is demonstrated through extensive simulations. The dissertation also addresses non-cooperation problems in multi-user wireless sensor networks. A scalable lightweight enforcement algorithm using evolutionary game theory is also designed. The effectiveness of this cooperation enforcement algorithm is validated through mathematical analysis and simulation. This research has advanced the knowledge of wireless sensor network security and cooperation by developing new techniques based on mathematical models. By doing this, we have enabled others to build on our work towards the creation of highly trusted wireless sensor networks. This would facilitate its full utilization in many fields ranging from civilian to military applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the shallow continental shelf in Northeastern Rio Grande do Norte - Brazil, important underwater geomorphological features can be found 6km from the coastline. They are coral reefs, locally known as “parrachos”. The present study aims to characterize and analyze the geomorphological feature as well as the ones of the benthic surface, and the distribution of biogenic sediments found in parrachos at Rio do Fogo and associated shallow platforms, by using remote sensing products and in situ data collections. This was made possible due to sedimentological, bathymetric and geomorphological maps elaborated from composite bands of images from the satellite sensors ETM+/Landsat-7, OLI/Landsat-8, MS/GeoEye and PAN/WordView-1, and analysis of bottom sediments samples. These maps were analyzed, integrally interpreted and validated in fieldwork, thus permitting the generation of a new geomorphological zoning of the shallow shelf in study and a geoenvironmental map of the Parrachos in Rio do Fogo. The images used were subject to Digital Image Processing techniques. All obtained data and information were stored in a Geographic Information System (GIS) and can become available to the scientific community. This shallow platform has a carbonate bottom composed mostly by algae. Collected and analyzed sediment samples can be classified as biogenic carbonatic sands, as they are composed 75% by calcareous algae, according to the found samples. The most abundant classes are green algae, red algae, nonbiogenic sediments (mineral grains), ancient algae and molluscs. At the parrachos the following was mapped: Barreta Channel, intertidal reefs, submerged reefs, the spur and grooves, the pools, the sandy bank, the bank of algae, sea grass, submerged roads and Rio do Fogo Channel. This work presents new information about geomorphology and evolution in the study area, and will be guiding future decision making in the handling and environmental management of the region

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic detection of blood components is an important topic in the field of hematology. The segmentation is an important stage because it allows components to be grouped into common areas and processed separately and leukocyte differential classification enables them to be analyzed separately. With the auto-segmentation and differential classification, this work is contributing to the analysis process of blood components by providing tools that reduce the manual labor and increasing its accuracy and efficiency. Using techniques of digital image processing associated with a generic and automatic fuzzy approach, this work proposes two Fuzzy Inference Systems, defined as I and II, for autosegmentation of blood components and leukocyte differential classification, respectively, in microscopic images smears. Using the Fuzzy Inference System I, the proposed technique performs the segmentation of the image in four regions: the leukocyte’s nucleus and cytoplasm, erythrocyte and plasma area and using the Fuzzy Inference System II and the segmented leukocyte (nucleus and cytoplasm) classify them differentially in five types: basophils, eosinophils, lymphocytes, monocytes and neutrophils. Were used for testing 530 images containing microscopic samples of blood smears with different methods. The images were processed and its accuracy indices and Gold Standards were calculated and compared with the manual results and other results found at literature for the same problems. Regarding segmentation, a technique developed showed percentages of accuracy of 97.31% for leukocytes, 95.39% to erythrocytes and 95.06% for blood plasma. As for the differential classification, the percentage varied between 92.98% and 98.39% for the different leukocyte types. In addition to promoting auto-segmentation and differential classification, the proposed technique also contributes to the definition of new descriptors and the construction of an image database using various processes hematological staining

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematical Morphology presents a systematic approach to extract geometric features of binary images, using morphological operators that transform the original image into another by means of a third image called structuring element and came out in 1960 by researchers Jean Serra and George Matheron. Fuzzy mathematical morphology extends the operators towards grayscale and color images and was initially proposed by Goetherian using fuzzy logic. Using this approach it is possible to make a study of fuzzy connectives, which allows some scope for analysis for the construction of morphological operators and their applicability in image processing. In this paper, we propose the development of morphological operators fuzzy using the R-implications for aid and improve image processing, and then to build a system with these operators to count the spores mycorrhizal fungi and red blood cells. It was used as the hypothetical-deductive methodologies for the part formal and incremental-iterative for the experimental part. These operators were applied in digital and microscopic images. The conjunctions and implications of fuzzy morphology mathematical reasoning will be used in order to choose the best adjunction to be applied depending on the problem being approached, i.e., we will use automorphisms on the implications and observe their influence on segmenting images and then on their processing. In order to validate the developed system, it was applied to counting problems in microscopic images, extending to pathological images. It was noted that for the computation of spores the best operator was the erosion of Gödel. It developed three groups of morphological operators fuzzy, Lukasiewicz, And Godel Goguen that can have a variety applications

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing in world population, with higher proportion of elderly, leads to an increase in the number of individuals with vision loss and cataracts are one of the leading causes of blindness worldwide. Cataract is an eye disease that is the partial or total opacity of the crystalline lens (natural lens of the eye) or its capsule. It can be triggered by several factors such as trauma, age, diabetes mellitus, and medications, among others. It is known that the attendance by ophthalmologists in rural and poor areas in Brazil is less than needed and many patients with treatable diseases such as cataracts are undiagnosed and therefore untreated. In this context, this project presents the development of OPTICA, a system of teleophthalmology using smartphones for ophthalmic emergencies detection, providing a diagnostic aid for cataract using specialists systems and image processing techniques. The images are captured by a cellphone camera and along with a questionnaire filled with patient information are transmitted securely via the platform Mobile SANA to a online server that has an intelligent system available to assist in the diagnosis of cataract and provides ophthalmologists who analyze the information and write back the patient’s report. Thus, the OPTICA provides eye care to the poorest and least favored population, improving the screening of critically ill patients and increasing access to diagnosis and treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fluorescent proteins are an essential tool in many fields of biology, since they allow us to watch the development of structures and dynamic processes of cells in living tissue, with the aid of fluorescence microscopy. Optogenectics is another technique that is currently widely used in Neuroscience. In general, this technique allows to activate/deactivate neurons with the radiation of certain wavelengths on the cells that have ion channels sensitive to light, at the same time that can be used with fluorescent proteins. This dissertation has two main objectives. Initially, we study the interaction of light radiation and mice brain tissue to be applied in optogenetic experiments. In this step, we model absorption and scattering effects using mice brain tissue characteristics and Kubelka-Munk theory, for specific wavelengths, as a function of light penetration depth (distance) within the tissue. Furthermore, we model temperature variations using the finite element method to solve Pennes’ bioheat equation, with the aid of COMSOL Multiphysics Modeling Software 4.4, where we simulate protocols of light stimulation tipically used in optogenetics. Subsequently, we develop some computational algorithms to reduce the exposure of neuron cells to the light radiation necessary for the visualization of their emitted fluorescence. At this stage, we describe the image processing techniques developed to be used in fluorescence microscopy to reduce the exposure of the brain samples to continuous light, which is responsible for fluorochrome excitation. The developed techniques are able to track, in real time, a region of interest (ROI) and replace the fluorescence emitted by the cells by a virtual mask, as a result of the overlay of the tracked ROI and the fluorescence information previously stored, preserving cell location, independently of the time exposure to fluorescent light. In summary, this dissertation intends to investigate and describe the effects of light radiation in brain tissue, within the context of Optogenetics, in addition to providing a computational tool to be used in fluorescence microscopy experiments to reduce image bleaching and photodamage due to the intense exposure of fluorescent cells to light radiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several are the areas in which digital images are used in solving day-to-day problems. In medicine the use of computer systems have improved the diagnosis and medical interpretations. In dentistry it’s not different, increasingly procedures assisted by computers have support dentists in their tasks. Set in this context, an area of dentistry known as public oral health is responsible for diagnosis and oral health treatment of a population. To this end, oral visual inspections are held in order to obtain oral health status information of a given population. From this collection of information, also known as epidemiological survey, the dentist can plan and evaluate taken actions for the different problems identified. This procedure has limiting factors, such as a limited number of qualified professionals to perform these tasks, different diagnoses interpretations among other factors. Given this context came the ideia of using intelligent systems techniques in supporting carrying out these tasks. Thus, it was proposed in this paper the development of an intelligent system able to segment, count and classify teeth from occlusal intraoral digital photographic images. The proposed system makes combined use of machine learning techniques and digital image processing. We first carried out a color-based segmentation on regions of interest, teeth and non teeth, in the images through the use of Support Vector Machine. After identifying these regions were used techniques based on morphological operators such as erosion and transformed watershed for counting and detecting the boundaries of the teeth, respectively. With the border detection of teeth was possible to calculate the Fourier descriptors for their shape and the position descriptors. Then the teeth were classified according to their types through the use of the SVM from the method one-against-all used in multiclass problem. The multiclass classification problem has been approached in two different ways. In the first approach we have considered three class types: molar, premolar and non teeth, while the second approach were considered five class types: molar, premolar, canine, incisor and non teeth. The system presented a satisfactory performance in the segmenting, counting and classification of teeth present in the images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several are the areas in which digital images are used in solving day-to-day problems. In medicine the use of computer systems have improved the diagnosis and medical interpretations. In dentistry it’s not different, increasingly procedures assisted by computers have support dentists in their tasks. Set in this context, an area of dentistry known as public oral health is responsible for diagnosis and oral health treatment of a population. To this end, oral visual inspections are held in order to obtain oral health status information of a given population. From this collection of information, also known as epidemiological survey, the dentist can plan and evaluate taken actions for the different problems identified. This procedure has limiting factors, such as a limited number of qualified professionals to perform these tasks, different diagnoses interpretations among other factors. Given this context came the ideia of using intelligent systems techniques in supporting carrying out these tasks. Thus, it was proposed in this paper the development of an intelligent system able to segment, count and classify teeth from occlusal intraoral digital photographic images. The proposed system makes combined use of machine learning techniques and digital image processing. We first carried out a color-based segmentation on regions of interest, teeth and non teeth, in the images through the use of Support Vector Machine. After identifying these regions were used techniques based on morphological operators such as erosion and transformed watershed for counting and detecting the boundaries of the teeth, respectively. With the border detection of teeth was possible to calculate the Fourier descriptors for their shape and the position descriptors. Then the teeth were classified according to their types through the use of the SVM from the method one-against-all used in multiclass problem. The multiclass classification problem has been approached in two different ways. In the first approach we have considered three class types: molar, premolar and non teeth, while the second approach were considered five class types: molar, premolar, canine, incisor and non teeth. The system presented a satisfactory performance in the segmenting, counting and classification of teeth present in the images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficient and effective approaches of dealing with the vast amount of visual information available nowadays are highly sought after. This is particularly the case for image collections, both personal and commercial. Due to the magnitude of these ever expanding image repositories, annotation of all images images is infeasible, and search in such an image collection therefore becomes inherently difficult. Although content-based image retrieval techniques have shown much potential, such approaches also suffer from various problems making it difficult to adopt them in practice. In this paper, we follow a different approach, namely that of browsing image databases for image retrieval. In our Honeycomb Image Browser, large image databases are visualised on a hexagonal lattice with image thumbnails occupying hexagons. Arranged in a space filling manner, visually similar images are located close together enabling large image datasets to be navigated in a hierarchical manner. Various browsing tools are incorporated to allow for interactive exploration of the database. Experimental results confirm that our approach affords efficient image retrieval. © 2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Digital Image Processing is a rapidly evolving eld with growing applications in Science and Engineering. It involves changing the nature of an image in order to either improve its pictorial information for human interpretation or render it more suitable for autonomous machine perception. One of the major areas of image processing for human vision applications is image enhancement. The principal goal of image enhancement is to improve visual quality of an image, typically by taking advantage of the response of human visual system. Image enhancement methods are carried out usually in the pixel domain. Transform domain methods can often provide another way to interpret and understand image contents. A suitable transform, thus selected, should have less computational complexity. Sequency ordered arrangement of unique MRT (Mapped Real Transform) coe cients can give rise to an integer-to-integer transform, named Sequency based unique MRT (SMRT), suitable for image processing applications. The development of the SMRT from UMRT (Unique MRT), forward & inverse SMRT algorithms and the basis functions are introduced. A few properties of the SMRT are explored and its scope in lossless text compression is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Au cours des dernières décennies, l’effort sur les applications de capteurs infrarouges a largement progressé dans le monde. Mais, une certaine difficulté demeure, en ce qui concerne le fait que les objets ne sont pas assez clairs ou ne peuvent pas toujours être distingués facilement dans l’image obtenue pour la scène observée. L’amélioration de l’image infrarouge a joué un rôle important dans le développement de technologies de la vision infrarouge de l’ordinateur, le traitement de l’image et les essais non destructifs, etc. Cette thèse traite de la question des techniques d’amélioration de l’image infrarouge en deux aspects, y compris le traitement d’une seule image infrarouge dans le domaine hybride espacefréquence, et la fusion d’images infrarouges et visibles employant la technique du nonsubsampled Contourlet transformer (NSCT). La fusion d’images peut être considérée comme étant la poursuite de l’exploration du modèle d’amélioration de l’image unique infrarouge, alors qu’il combine les images infrarouges et visibles en une seule image pour représenter et améliorer toutes les informations utiles et les caractéristiques des images sources, car une seule image ne pouvait contenir tous les renseignements pertinents ou disponibles en raison de restrictions découlant de tout capteur unique de l’imagerie. Nous examinons et faisons une enquête concernant le développement de techniques d’amélioration d’images infrarouges, et ensuite nous nous consacrons à l’amélioration de l’image unique infrarouge, et nous proposons un schéma d’amélioration de domaine hybride avec une méthode d’évaluation floue de seuil amélioré, qui permet d’obtenir une qualité d’image supérieure et améliore la perception visuelle humaine. Les techniques de fusion d’images infrarouges et visibles sont établies à l’aide de la mise en oeuvre d’une mise en registre précise des images sources acquises par différents capteurs. L’algorithme SURF-RANSAC est appliqué pour la mise en registre tout au long des travaux de recherche, ce qui conduit à des images mises en registre de façon très précise et des bénéfices accrus pour le traitement de fusion. Pour les questions de fusion d’images infrarouges et visibles, une série d’approches avancées et efficaces sont proposés. Une méthode standard de fusion à base de NSCT multi-canal est présente comme référence pour les approches de fusion proposées suivantes. Une approche conjointe de fusion, impliquant l’Adaptive-Gaussian NSCT et la transformée en ondelettes (Wavelet Transform, WT) est propose, ce qui conduit à des résultats de fusion qui sont meilleurs que ceux obtenus avec les méthodes non-adaptatives générales. Une approche de fusion basée sur le NSCT employant la détection comprime (CS, compressed sensing) et de la variation totale (TV) à des coefficients d’échantillons clairsemés et effectuant la reconstruction de coefficients fusionnés de façon précise est proposée, qui obtient de bien meilleurs résultats de fusion par le biais d’une pré-amélioration de l’image infrarouge et en diminuant les informations redondantes des coefficients de fusion. Une procédure de fusion basée sur le NSCT utilisant une technique de détection rapide de rétrécissement itératif comprimé (fast iterative-shrinking compressed sensing, FISCS) est proposée pour compresser les coefficients décomposés et reconstruire les coefficients fusionnés dans le processus de fusion, qui conduit à de meilleurs résultats plus rapidement et d’une manière efficace.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we demonstrate a digital signal processing (DSP) algorithm for improving spatial resolution of images captured by CMOS cameras. The basic approach is to reconstruct a high resolution (HR) image from a shift-related low resolution (LR) image sequence. The aliasing relationship of Fourier transforms between discrete and continuous images in the frequency domain is used for mapping LR images to a HR image. The method of projection onto convex sets (POCS) is applied to trace the best estimate of pixel matching from the LR images to the reconstructed HR image. Computer simulations and preliminary experimental results have shown that the algorithm works effectively on the application of post-image-captured processing for CMOS cameras. It can also be applied to HR digital image reconstruction, where shift information of the LR image sequence is known.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Image processing offers unparalleled potential for traffic monitoring and control. For many years engineers have attempted to perfect the art of automatic data abstraction from sequences of video images. This paper outlines a research project undertaken at Napier University by the authors in the field of image processing for automatic traffic analysis. A software based system implementing TRIP algorithms to count cars and measure vehicle speed has been developed by members of the Transport Engineering Research Unit (TERU) at the University. The TRIP algorithm has been ported and evaluated on an IBM PC platform with a view to hardware implementation of the pre-processing routines required for vehicle detection. Results show that a software based traffic counting system is realisable for single window processing. Due to the high volume of data required to be processed for full frames or multiple lanes, system operations in real time are limited. Therefore specific hardware is required to be designed. The paper outlines a hardware design for implementation of inter-frame and background differencing, background updating and shadow removal techniques. Preliminary results showing the processing time and counting accuracy for the routines implemented in software are presented and a real time hardware pre-processing architecture is described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: Mobile applications support a set of user-interaction features that are independent of the application logic. Rotating the device, scrolling, or zooming are examples of such features. Some bugs in mobile applications can be attributed to user-interaction features. Objective: This paper proposes and evaluates a bug analyzer based on user-interaction features that uses digital image processing to find bugs. Method: Our bug analyzer detects bugs by comparing the similarity between images taken before and after a user-interaction. SURF, an interest point detector and descriptor, is used to compare the images. To evaluate the bug analyzer, we conducted a case study with 15 randomly selected mobile applications. First, we identified user-interaction bugs by manually testing the applications. Images were captured before and after applying each user-interaction feature. Then, image pairs were processed with SURF to obtain interest points, from which a similarity percentage was computed, to finally decide whether there was a bug. Results: We performed a total of 49 user-interaction feature tests. When manually testing the applications, 17 bugs were found, whereas when using image processing, 15 bugs were detected. Conclusions: 8 out of 15 mobile applications tested had bugs associated to user-interaction features. Our bug analyzer based on image processing was able to detect 88% (15 out of 17) of the user-interaction bugs found with manual testing.