744 resultados para INTRACRANIAL MENINGIOMAS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This communication describes the general biochemical properties and some immunological characteristics of the venom from the Peruvian scorpion Hadruroides lunatus, which is the most medically relevant species in Peru. The soluble venom of this scorpion is toxic to mice, the LD50 determined was 0.1 mg/kg and 21.55 mg/kg when the venom was injected intracranial or intraperitoneally, respectively. The soluble venom displayed proteolytic, hyaluronidasic, phospholipasic and cardiotoxic activities. High performance liquid chromatography of the soluble venom resulted in the separation of 20 fractions. Two peptides with phospholipasic activity were isolated to homogeneity and their molecular masses determined by mass spectrometry (MALDI TOF). Anti-H. lunatus venom sera were produced in rabbits. Western blotting analysis showed that most of the protein content of this venom is immunogenic. H. lunatus anti-venom displayed consistent cross-reactivity with venom antigens from the new World-scorpions Tityus serrulatus and Centruroides sculpturatus venoms; however, a weaker reactivity was observed against the venom antigens from the old World-scorpion Androctonus australis Hector. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: Our aim was to evaluate the relationship between serum C-reactive protein (CRP) levels and the neurological prognosis and development of vasospasm in patients with aneurysmal subarachnoid hemorrhage (aSAH). Methods: Eighty-two adult patients with aSAH diagnoses were prospectively evaluated. Glasgow Coma Scale (GCS) score, Hunt and Hess grade, Fisher grade, cranial CT scans, digital subtraction angiography studies and daily neurological examinations were recorded. Serial serum CRP measurements were obtained daily between admission and the tenth day. Glasgow Outcome Scale (GOS) and the modified Rankin Scale (mRS) were used to assess the prognosis. Results: Serum CRP levels were related to severity of aSAH. Patients with lower GCS scores and higher Hunt and Hess and Fisher grades presented statistically significant higher serum CRP levels. Patients with higher serum CRP levels had a less favorable prognosis. Conclusions: Increased serum CRP levels were strongly associated with worse clinical prognosis in this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is the most aggressive of the astrocytic malignancies and the most common intracranial tumor in adults. Although the epidermal growth factor receptor (EGFR) is overexpressed and/or mutated in at least 50% of GBM cases and is required for tumor maintenance in animal models, EGFR inhibitors have thus far failed to deliver significant responses in GBM patients. One inherent resistance mechanism in GBM is the coactivation of multiple receptor tyrosine kinases, which generates redundancy in activation of phosphoinositide-3'-kinase (PI3K) signaling. Here we demonstrate that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor is frequently phosphorylated at a conserved tyrosine residue, Y240, in GBM clinical samples. Phosphorylation of Y240 is associated with shortened overall survival and resistance to EGFR inhibitor therapy in GBM patients and plays an active role in mediating resistance to EGFR inhibition in vitro. Y240 phosphorylation can be mediated by both fibroblast growth factor receptors and SRC family kinases (SFKs) but does not affect the ability of PTEN to antagonize PI3K signaling. These findings show that, in addition to genetic loss and mutation of PTEN, its modulation by tyrosine phosphorylation has important implications for the development and treatment of GBM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Orbital infections may result in permanent morbidity because of the severity of infection. Furthermore, delayed diagnosis or treatment of orbital infections can lead to intracranial complications and even death. The majority of orbital infections develop from paranasal sinus infections, cutaneous infections, and periorbital trauma. Dacryocystitis and odontogenic infection are also accounted as potential etiologies but are scarcely reported in scientific literature. Methods: The patient revealed a history of having endodontic treatment on left maxillary second molar performed 2 weeks previously. Moreover, she exhibited signs of facial pain accompanied by sinusitis symptoms, fever, and nasal obstruction the week after this endodontic procedure. The patient presented proptosis, impairment of ocular motility to the right side, facial tenderness, palpebral erythema, and referred decreased visual acuity. Intraoral exam revealed root fragments of left maxillary first molar and an extensive carious lesion on left maxillary second molar. Computed tomography enabled the observation of frontal sinus, left-sided maxillary, opacity of sphenoidal and ethmoidal sinuses, and apical lesion of left maxillary first and second molars, all suggesting the presence of their apex in the maxillary sinus. In addition, images revealed ocular proptosis and presence of high-density areas suggestive of pus in the medial orbital wall region. Results: The patient was submitted to surgical drainage under general anesthesia approximately 8 hours after the clinical evaluation. Conclusions: Early detection of orbital infection, proper diagnostic tests, and treatment may provide successful outcomes of this rarely occurring disease. (J Endod 2012;38:1541-1543)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors present a prospective study on the coexistence of spinal injury (SI) and severe traumatic brain injury (TBI) in patients who were involved in traffic accidents and arrived at the Emergency Department of Hospital das Clinicas of the University of Sao Paulo between September 1, 2003 and December 31, 2009. A whole-body computed tomography was the diagnostic method employed in all cases. Both lesions were observed simultaneously in 69 cases (19.4%), predominantly in males (57 individuals, 82.6%). Cranial injuries included epidural hematoma, acute subdural hematoma, brain contusion, ventricular hemorrhage and traumatic subarachnoid hemorrhage. The transverse processes were the most fragile portion of the vertebrae and were more susceptible to fractures. The seventh cervical vertebra was the most commonly affected segment, with 24 cases (34.78%). The distribution of fractures was similar among the other cervical vertebrae, the first four thoracic vertebrae and the lumbar spine. Neurological deficit secondary to SI was detected in eight individuals (11.59%) and two individuals (2.89%) died. Traumatic subarachnoid hemorrhage was the most common intracranial finding (82.6%). Spinal surgery was necessary in 24 patients (34.78%) and brain surgery in 18 (26%). Four patients (5.79%) underwent cranial and spinal surgeries. The authors conclude that it is necessary a judicious assessment of the entire spine of individuals who presented in coma after suffering a brain injury associated to multisystemic trauma and whole-body CT scan may play a major role in this scenario.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Large vessel occlusion in acute ischemic stroke is associated with low recanalization rates under intravenous thrombolysis. We evaluated the safety and efficacy of the Solitaire AB stent in treating acute ischemic stroke. METHODS: Patients presenting with acute ischemic stroke were prospectively evaluated. The neurological outcomes were assessed using the National Institutes of Health Stroke Scale and the modified Rankin Scale. Time was recorded from the symptom onset to the recanalization and procedure time. Recanalization was assessed using the thrombolysis in cerebral infarction score. RESULTS: Twenty-one patients were evaluated. The mean patient age was 65, and the National Institutes of Health Stroke Scale scores ranged from 7 to 28 (average 17+/-6.36) at presentation. The vessel occlusions occurred in the middle cerebral artery (61.9%), distal internal carotid artery (14.3%), tandem carotid occlusion (14.3%), and basilar artery (9.5%). Primary thrombectomy, rescue treatment and a bridging approach represented 66.6%, 28.6%, and 4.8% of the performed procedures, respectively. The mean time from symptom onset to recanalization was 356.5+/-107.8 minutes (range, 80-586 minutes). The mean procedure time was 60.4+/-58.8 minutes (range, 14-240 minutes). The overall recanalization rate (thrombolysis in cerebral infarction scores of 3 or 2b) was 90.4%, and the symptomatic intracranial hemorrhage rate was 14.2%. The National Institutes of Health Stroke Scale scores at discharge ranged from 0 to 25 (average 6.9+/-7). At three months, 61.9% of the patients had a modified Rankin Scale score of 0 to 2, with an overall mortality rate of 9.5%. CONCLUSIONS: Intra-arterial thrombectomy with the Solitaire AB device appears to be safe and effective. Large randomized trials are necessary to confirm the benefits of this approach in acute ischemic stroke.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: DON, a serious complication of GO, is frequently difficult to diagnose clinically in its early stages because of confounding signs and symptoms of congestive orbitopathy. We evaluated the ability of square area measurements of orbital apex crowding, calculated with MDCT, to detect DON. MATERIALS AND METHODS: Fifty-six patients with GO were studied prospectively with complete neuro-ophthalmologic examination and MDCT scanning. Square measurements were taken from coronal sections 12 mm, 18 mm, and 24 mm from the interzygomatic line. The ratio between the extraocular muscle area and the orbital bone area was used as a Cl. Intracranial fat prolapse through the superior orbital fissure was recorded as present or absent. Severity of optic nerve crowding was also subjectively graded on corona! images. Orbits were divided into 2 groups (with or without clinical evidence of DON) and compared. RESULTS: Ninety-five orbits (36 with and 59 without DON) were studied. The CIs at all 3 levels and the subjective crowding score were significantly greater in orbits with DON (P<.001). No significant difference was observed regarding intracranial fat prolapse (P=.105). The area under the ROC curves was 0.91, 0.93, and 0.87 for CIs at 12, 18, and 24 mm, respectively. The best performance was at 18 mm, where a cutoff value of 57.5% corresponded to 91.7% sensitivity, 89.8% specificity, and an odds ratio of 97.2 for detecting DON. A significant correlation (P<.001) between the CIs and VF defects was observed. CONCLUSIONS: Orbital Cls based on area measurements were found to predict DON more reliably than subjective grading of orbital crowding or intracranial fat prolapse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionizing radiation is the most recognized risk factor for meningioma in pediatric long-term cancer survivors. Information in this rare setting is exceptional. We report the clinical and cytogenetic findings in a radiation-induced atypical meningioma following treatment for desmoplastic medulloblastoma in a child. This is the second study to describe the cytogenetic aspects on radiation-induced meningiomas in children. Chromosome banding analysis revealed a 46, XX, t(1;3)(p22;q12), del(1)(p?)[8]/46, XX[12]. Loss of chromosome 1p as a consequence of irradiation has been proposed to be more important in the development of secondary meningiomas in adults. Deletions in the short arm of chromosome 1 also appear to be a shared feature in both pediatric cases so far analyzed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. After brain death (BD) donors usually experience cardiac dysfunction, which is responsible for a considerable number of unused organs. Causes of this cardiac dysfunction are not fully understood. Some authors argue that autonomic storm with severe hemodynamic instability leads to inflammatory activation and myocardial dysfunction. Objectives. To investigate the hypothesis that thoracic epidural anesthesia blocks autonomic storm and improves graft condition by reducing the inflammatory response. Methods. Twenty-eight male Wistar rats (250-350 g) allocated to four groups received saline or bupivacaine via an epidural catheter at various times in relation to brain-death induction. Brain death was induced by a sudden increase in intracranial pressure by rapid inflation of a ballon catheter in the extradural space. Blood gases, electrolytes, and lactate analyses were performed at time zero, and 3 and 6 hours. Blood leukocytes were counted at 0 and 6 hours. After 6 hours of BD, we performed euthanasia to measure vascular adhesion molecule (VCAM)-1, intracellular adhesion molecule (ICAM)-1, interleukin (IL)-1 beta, tumor necrosis factor (TNF)-alpha, Bcl-2 and caspase-3 on cardiac tissue. Results. Thoracic epidural anesthesia was effective to block the autonomic storm with a significant difference in mean arterial pressure between the untreated (saline) and the bupivacaine group before BD (P < .05). However, no significant difference was observed for the expressions of VCAM-1, ICAM-1, TNF-alpha, IL-1 beta, Bcl-2, and caspase-3 (P > .05). Conclusion. Autonomic storm did not seem to be responsible for the inflammatory changes associated with BD; thoracic epidural anesthesia did not modify the expression of inflammatory mediators although it effectively blocked the autonomic storm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background-Patients with acute coronary syndromes and history of stroke or transient ischemic attack (TIA) have an increased rate of recurrent cardiac events and intracranial hemorrhages. Methods and Results-We evaluated treatment effects of ticagrelor versus clopidogrel in patients with acute coronary syndrome with and without a history of prior stroke or TIA in the PLATelet inhibition and patient Outcomes (PLATO) trial. Of the 18 624 randomized patients, 1152 (6.2%) had a history of stroke or TIA. Such patients had higher rates of myocardial infarction (11.5% versus 6.0%), death (10.5% versus 4.9%), stroke (3.4% versus 1.2%), and intracranial bleeding (0.8% versus 0.2%) than patients without prior stroke or TIA. Among patients with a history of stroke or TIA, the reduction of the primary composite outcome and total mortality at 1 year with ticagrelor versus clopidogrel was consistent with the overall trial results: 19.0% versus 20.8% (hazard ratio, 0.87; 95% confidence interval, 0.66-1.13; interaction P=0.84) and 7.9% versus 13.0% (hazard ratio, 0.62; 95% confidence interval, 0.42-0.91). The overall PLATO-defined bleeding rates were similar: 14.6% versus 14.9% (hazard ratio, 0.99; 95% confidence interval, 0.71-1.37), and intracranial bleeding occurred infrequently (4 versus 4 cases, respectively). Conclusions-Patients with acute coronary syndrome with a prior history of ischemic stroke or TIA had higher rates of clinical outcomes than patients without prior stroke or TIA. However, the efficacy and bleeding results of ticagrelor in these high-risk patients were consistent with the overall trial population, with a favorable clinical net benefit and associated impact on mortality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Experimental findings support clinical evidence that brain death impairs the viability of organs for transplantation, triggering hemodynamic, hormonal, and inflammatory responses. However, several of these events could be consequences of brain death-associated trauma. This study investigated microcirculatory alterations and systemic inflammatory markers in brain-dead rats and the influence of the associated trauma. METHOD: Brain death was induced using intracranial balloon inflation; sham-operated rats were trepanned only. After 30 or 180 min, the mesenteric microcirculation was observed using intravital microscopy. The expression of P-selectin and ICAM-1 on the endothelium was evaluated using immunohistochemistry. The serum cytokine, chemokine, and corticosterone levels were quantified using enzyme-linked immunosorbent assays. White blood cell counts were also determined. RESULTS: Brain death resulted in a decrease in the mesenteric perfusion to 30%, a 2.6-fold increase in the expression of ICAM-1 and leukocyte migration at the mesentery, a 70% reduction in the serum corticosterone level and pronounced leukopenia. Similar increases in the cytokine and chemokine levels were seen in the both the experimental and control animals. CONCLUSION: The data presented in this study suggest that brain death itself induces hypoperfusion in the mesenteric microcirculation that is associated with a pronounced reduction in the endogenous corticosterone level, thereby leading to increased local inflammation and organ dysfunction. These events are paradoxically associated with induced leukopenia after brain damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Thrombin potently activates platelets through the protease-activated receptor PAR-1. Vorapaxar is a novel antiplatelet agent that selectively inhibits the cellular actions of thrombin through antagonism of PAR-1. METHODS We randomly assigned 26,449 patients who had a history of myocardial infarction, ischemic stroke, or peripheral arterial disease to receive vorapaxar (2.5 mg daily) or matching placebo and followed them for a median of 30 months. The primary efficacy end point was the composite of death from cardiovascular causes, myocardial infarction, or stroke. After 2 years, the data and safety monitoring board recommended discontinuation of the study treatment in patients with a history of stroke owing to the risk of intracranial hemorrhage. RESULTS At 3 years, the primary end point had occurred in 1028 patients (9.3%) in the vorapaxar group and in 1176 patients (10.5%) in the placebo group (hazard ratio for the vorapaxar group, 0.87; 95% confidence interval [CI], 0.80 to 0.94; P<0.001). Cardiovascular death, myocardial infarction, stroke, or recurrent ischemia leading to revascularization occurred in 1259 patients (11.2%) in the vorapaxar group and 1417 patients (12.4%) in the placebo group (hazard ratio, 0.88; 95% CI, 0.82 to 0.95; P=0.001). Moderate or severe bleeding occurred in 4.2% of patients who received vorapaxar and 2.5% of those who received placebo (hazard ratio, 1.66; 95% CI, 1.43 to 1.93; P<0.001). There was an increase in the rate of intracranial hemorrhage in the vorapaxar group (1.0%, vs. 0.5% in the placebo group; P<0.001). CONCLUSIONS Inhibition of PAR-1 with vorapaxar reduced the risk of cardiovascular death or ischemic events in patients with stable atherosclerosis who were receiving standard therapy. However, it increased the risk of moderate or severe bleeding, including intracranial hemorrhage. (Funded by Merck; TRA 2P-TIMI 50 ClinicalTrials.gov number, NCT00526474.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dengue is the most prevalent arboviral infection, affecting millions of people every year. Attempts to control such infection are being made, and the development of a vaccine is a World Health Organization priority. Among the proteins being tested as vaccine candidates in preclinical settings is the non-structural protein 1 (NS1). In the present study, we tested the immune responses generated by targeting the NS1 protein to two different dendritic cell populations. Dendritic cells (DCs) are important antigen presenting cells, and targeting proteins to maturing DCs has proved to be an efficient means of immunization. Antigen targeting is accomplished by the use of a monoclonal antibody (mAb) directed against a DC cell surface receptor fused to the protein of interest. We used two mAbs (αDEC205 and αDCIR2) to target two distinct DC populations, expressing either DEC205 or DCIR2 endocytic receptors, respectively, in mice. The fusion mAbs were successfully produced, bound to their respective receptors, and were used to immunize BALB/c mice in the presence of polyriboinosinic: polyribocytidylic acid (poly (I:C)), as a DC maturation stimulus. We observed induction of strong anti-NS1 antibody responses and similar antigen binding affinity irrespectively of the DC population targeted. Nevertheless, the IgG1/IgG2a ratios were different between mouse groups immunized with αDEC-NS1 and αDCIR2-NS1 mAbs. When we tested the induction of cellular immune responses, the number of IFN-γ producing cells was higher in αDEC-NS1 immunized animals. In addition, mice immunized with the αDEC-NS1 mAb were significantly protected from a lethal intracranial challenge with the DENV2 NGC strain when compared to mice immunized with αDCIR2-NS1 mAb. Protection was partially mediated by CD4(+) and CD8(+) T cells as depletion of these populations reduced both survival and morbidity signs. We conclude that targeting the NS1 protein to the DEC205(+) DC population with poly (I:C) opens perspectives for dengue vaccine development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is focused on the metabolomic study of human cancer tissues by ex vivo High Resolution-Magic Angle Spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy. This new technique allows for the acquisition of spectra directly on intact tissues (biopsy or surgery), and it has become very important for integrated metabonomics studies. The objective is to identify metabolites that can be used as markers for the discrimination of the different types of cancer, for the grading, and for the assessment of the evolution of the tumour. Furthermore, an attempt to recognize metabolites, that although involved in the metabolism of tumoral tissues in low concentration, can be important modulators of neoplastic proliferation, was performed. In addition, NMR data was integrated with statistical techniques in order to obtain semi-quantitative information about the metabolite markers. In the case of gliomas, the NMR study was correlated with gene expression of neoplastic tissues. Chapter 1 begins with a general description of a new “omics” study, the metabolomics. The study of metabolism can contribute significantly to biomedical research and, ultimately, to clinical medical practice. This rapidly developing discipline involves the study of the metabolome: the total repertoire of small molecules present in cells, tissues, organs, and biological fluids. Metabolomic approaches are becoming increasingly popular in disease diagnosis and will play an important role on improving our understanding of cancer mechanism. Chapter 2 addresses in more detail the basis of NMR Spectroscopy, presenting the new HR-MAS NMR tool, that is gaining importance in the examination of tumour tissues, and in the assessment of tumour grade. Some advanced chemometric methods were used in an attempt to enhance the interpretation and quantitative information of the HR-MAS NMR data are and presented in chapter 3. Chemometric methods seem to have a high potential in the study of human diseases, as it permits the extraction of new and relevant information from spectroscopic data, allowing a better interpretation of the results. Chapter 4 reports results obtained from HR-MAS NMR analyses performed on different brain tumours: medulloblastoma, meningioms and gliomas. The medulloblastoma study is a case report of primitive neuroectodermal tumor (PNET) localised in the cerebellar region by Magnetic Resonance Imaging (MRI) in a 3-year-old child. In vivo single voxel 1H MRS shows high specificity in detecting the main metabolic alterations in the primitive cerebellar lesion; which consist of very high amounts of the choline-containing compounds and of very low levels of creatine derivatives and N-acetylaspartate. Ex vivo HR-MAS NMR, performed at 9.4 Tesla on the neoplastic specimen collected during surgery, allows the unambiguous identification of several metabolites giving a more in-depth evaluation of the metabolic pattern of the lesion. The ex vivo HR-MAS NMR spectra show higher detail than that obtained in vivo. In addition, the spectroscopic data appear to correlate with some morphological features of the medulloblastoma. The present study shows that ex vivo HR-MAS 1H NMR is able to strongly improve the clinical possibility of in vivo MRS and can be used in conjunction with in vivo spectroscopy for clinical purposes. Three histological subtypes of meningiomas (meningothelial, fibrous and oncocytic) were analysed both by in vivo and ex vivo MRS experiments. The ex vivo HR-MAS investigations are very helpful for the assignment of the in vivo resonances of human meningiomas and for the validation of the quantification procedure of in vivo MR spectra. By using one- and two dimensional experiments, several metabolites in different histological subtypes of meningiomas, were identified. The spectroscopic data confirmed the presence of the typical metabolites of these benign neoplasms and, at the same time, that meningomas with different morphological characteristics have different metabolic profiles, particularly regarding macromolecules and lipids. The profile of total choline metabolites (tCho) and the expression of the Kennedy pathway genes in biopsies of human gliomas were also investigated using HR-MAS NMR, and microfluidic genomic cards. 1H HR-MAS spectra, allowed the resolution and relative quantification by LCModel of the resonances from choline (Cho), phosphorylcholine (PC) and glycerolphorylcholine (GPC), the three main components of the combined tCho peak observed in gliomas by in vivo 1H MRS spectroscopy. All glioma biopsies depicted an increase in tCho as calculated from the addition of Cho, PC and GPC HR-MAS resonances. However, the increase was constantly derived from augmented GPC in low grade NMR gliomas or increased PC content in the high grade gliomas, respectively. This circumstance allowed the unambiguous discrimination of high and low grade gliomas by 1H HR-MAS, which could not be achieved by calculating the tCho/Cr ratio commonly used by in vivo 1H MR spectroscopy. The expression of the genes involved in choline metabolism was investigated in the same biopsies. The present findings offer a convenient procedure to classify accurately glioma grade using 1H HR-MAS, providing in addition the genetic background for the alterations of choline metabolism observed in high and low gliomas grade. Chapter 5 reports the study on human gastrointestinal tract (stomach and colon) neoplasms. The human healthy gastric mucosa, and the characteristics of the biochemical profile of human gastric adenocarcinoma in comparison with that of healthy gastric mucosa were analyzed using ex vivo HR-MAS NMR. Healthy human mucosa is mainly characterized by the presence of small metabolites (more than 50 identified) and macromolecules. The adenocarcinoma spectra were dominated by the presence of signals due to triglycerides, that are usually very low in healthy gastric mucosa. The use of spin-echo experiments enable us to detect some metabolites in the unhealthy tissues and to determine their variation with respect to the healthy ones. Then, the ex vivo HR-MAS NMR analysis was applied to human gastric tissue, to obtain information on the molecular steps involved in the gastric carcinogenesis. A microscopic investigation was also carried out in order to identify and locate the lipids in the cellular and extra-cellular environments. Correlation of the morphological changes detected by transmission (TEM) and scanning (SEM) electron microscopy, with the metabolic profile of gastric mucosa in healthy, gastric atrophy autoimmune diseases (AAG), Helicobacter pylori-related gastritis and adenocarcinoma subjects, were obtained. These ultrastructural studies of AAG and gastric adenocarcinoma revealed lipid intra- and extra-cellularly accumulation associated with a severe prenecrotic hypoxia and mitochondrial degeneration. A deep insight into the metabolic profile of human healthy and neoplastic colon tissues was gained using ex vivo HR-MAS NMR spectroscopy in combination with multivariate methods: Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA). The NMR spectra of healthy tissues highlight different metabolic profiles with respect to those of neoplastic and microscopically normal colon specimens (these last obtained at least 15 cm far from the adenocarcinoma). Furthermore, metabolic variations are detected not only for neoplastic tissues with different histological diagnosis, but also for those classified identical by histological analysis. These findings suggest that the same subclass of colon carcinoma is characterized, at a certain degree, by metabolic heterogeneity. The statistical multivariate approach applied to the NMR data is crucial in order to find metabolic markers of the neoplastic state of colon tissues, and to correctly classify the samples. Significant different levels of choline containing compounds, taurine and myoinositol, were observed. Chapter 6 deals with the metabolic profile of normal and tumoral renal human tissues obtained by ex vivo HR-MAS NMR. The spectra of human normal cortex and medulla show the presence of differently distributed osmolytes as markers of physiological renal condition. The marked decrease or disappearance of these metabolites and the high lipid content (triglycerides and cholesteryl esters) is typical of clear cell renal carcinoma (RCC), while papillary RCC is characterized by the absence of lipids and very high amounts of taurine. This research is a contribution to the biochemical classification of renal neoplastic pathologies, especially for RCCs, which can be evaluated by in vivo MRS for clinical purposes. Moreover, these data help to gain a better knowledge of the molecular processes envolved in the onset of renal carcinogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first part of my thesis presents an overview of the different approaches used in the past two decades in the attempt to forecast epileptic seizure on the basis of intracranial and scalp EEG. Past research could reveal some value of linear and nonlinear algorithms to detect EEG features changing over different phases of the epileptic cycle. However, their exact value for seizure prediction, in terms of sensitivity and specificity, is still discussed and has to be evaluated. In particular, the monitored EEG features may fluctuate with the vigilance state and lead to false alarms. Recently, such a dependency on vigilance states has been reported for some seizure prediction methods, suggesting a reduced reliability. An additional factor limiting application and validation of most seizure-prediction techniques is their computational load. For the first time, the reliability of permutation entropy [PE] was verified in seizure prediction on scalp EEG data, contemporarily controlling for its dependency on different vigilance states. PE was recently introduced as an extremely fast and robust complexity measure for chaotic time series and thus suitable for online application even in portable systems. The capability of PE to distinguish between preictal and interictal state has been demonstrated using Receiver Operating Characteristics (ROC) analysis. Correlation analysis was used to assess dependency of PE on vigilance states. Scalp EEG-Data from two right temporal epileptic lobe (RTLE) patients and from one patient with right frontal lobe epilepsy were analysed. The last patient was included only in the correlation analysis, since no datasets including seizures have been available for him. The ROC analysis showed a good separability of interictal and preictal phases for both RTLE patients, suggesting that PE could be sensitive to EEG modifications, not visible on visual inspection, that might occur well in advance respect to the EEG and clinical onset of seizures. However, the simultaneous assessment of the changes in vigilance showed that: a) all seizures occurred in association with the transition of vigilance states; b) PE was sensitive in detecting different vigilance states, independently of seizure occurrences. Due to the limitations of the datasets, these results cannot rule out the capability of PE to detect preictal states. However, the good separability between pre- and interictal phases might depend exclusively on the coincidence of epileptic seizure onset with a transition from a state of low vigilance to a state of increased vigilance. The finding of a dependency of PE on vigilance state is an original finding, not reported in literature, and suggesting the possibility to classify vigilance states by means of PE in an authomatic and objectic way. The second part of my thesis provides the description of a novel behavioral task based on motor imagery skills, firstly introduced (Bruzzo et al. 2007), in order to study mental simulation of biological and non-biological movement in paranoid schizophrenics (PS). Immediately after the presentation of a real movement, participants had to imagine or re-enact the very same movement. By key release and key press respectively, participants had to indicate when they started and ended the mental simulation or the re-enactment, making it feasible to measure the duration of the simulated or re-enacted movements. The proportional error between duration of the re-enacted/simulated movement and the template movement were compared between different conditions, as well as between PS and healthy subjects. Results revealed a double dissociation between the mechanisms of mental simulation involved in biological and non-biologial movement simulation. While for PS were found large errors for simulation of biological movements, while being more acurate than healthy subjects during simulation of non-biological movements. Healthy subjects showed the opposite relationship, making errors during simulation of non-biological movements, but being most accurate during simulation of non-biological movements. However, the good timing precision during re-enactment of the movements in all conditions and in both groups of participants suggests that perception, memory and attention, as well as motor control processes were not affected. Based upon a long history of literature reporting the existence of psychotic episodes in epileptic patients, a longitudinal study, using a slightly modified behavioral paradigm, was carried out with two RTLE patients, one patient with idiopathic generalized epilepsy and one patient with extratemporal lobe epilepsy. Results provide strong evidence for a possibility to predict upcoming seizures in RTLE patients behaviorally. In the last part of the thesis it has been validated a behavioural strategy based on neurobiofeedback training, to voluntarily control seizures and to reduce there frequency. Three epileptic patients were included in this study. The biofeedback was based on monitoring of slow cortical potentials (SCPs) extracted online from scalp EEG. Patients were trained to produce positive shifts of SCPs. After a training phase patients were monitored for 6 months in order to validate the ability of the learned strategy to reduce seizure frequency. Two of the three refractory epileptic patients recruited for this study showed improvements in self-management and reduction of ictal episodes, even six months after the last training session.