919 resultados para Higher Order Thinking
Resumo:
Temporal and spatial changes in delta(13)C and delta(15)N of seston (mainly phytoplankton) and isotopic relationship between seston and the lake anchovy (Coilia ectenes) were studied in the large eutrophic freshwater Lake Chaohu in China. Much of the spatial and temporal variation in delta(13)C of lake anchovies was explained by variation in seston, indicating a strong link between pelagic primary production and higher order consumers. Because the lake is shallow, there were no significant differences in delta(13)C and delta(15)N of seston between surface and overlying waters. Spatially, the relatively high delta(13)C and delta(15)N of seston in the western part of the lake might be due to high levels of anthropogenically derived N and C introduced from the surrounding cities through sewage drainage systems. The trophic position of the lake anchovy in the food web of Lake Chaohu was estimated to be 2.9-4.1 (3.5 +/- 0.4), which agrees well with the previous stomach content analysis suggesting that the lake anchovy fed both on zooplankton and small planktivorous fishes.
Resumo:
The choice of the etching depth for semiconductor microcavities is a compromise between a high Q factor and a difficult technique in a practical fabricating process. In this paper, the influences of the etching depth on mode Q factors for mid-infrared quantum cascade microcylinder and microsquare lasers around 4.8 and 7.8 mu m are simulated by three-dimensional (3D) finite-difference time-domain (FDTD) techniques. For the microcylinder and the microsquare resonators, the mode Q factors of the whispering-gallery modes (WGMs) increase exponentially and linearly with the increase in the etching depth, respectively Furthermore, the mode Q factors of some higher order transverse WGMs may be larger than that of the fundamental transverse WGM in 3D microsquares. Based on the field distribution of the vertical multilayer slab waveguide and the mode Q factors versus the etching depth, the necessary etching depth is chosen at the position where the field amplitude is 1% of the peak value of the slab waveguide. In addition, the influences of sidewall roughness on the mode Q factors are simulated for microsquare resonators by 2D FDTD simulation. (C) 2009 Optical Society of America
Resumo:
Time-resolved light-current curves, spectra, and far-field distributions of ridge structure InGaN multiple quantum well laser diodes grown on sapphire substrate are measured with a temporal resolution of 0.1 ns under a pulsed current condition. Results show that the thermal lensing effect clearly improves the confinement of the higher order modes. The thermal lens leads to a lower threshold current for the higher order modes, a higher slope efficiency, and a change in the lasing mode of the device. The threshold current for the higher modes decreases by about 5 mA in every 10 ns in a pulse, and the slope efficiency increases by 7.5 times on the average when higher modes lase. (c) 2006 American Institute of Physics.
Resumo:
The relations between the gain factor, defined as the ratio of modal gain to material gain, and the optical confinement factor are discussed for the TE and TM modes in slab waveguides. For the TE modes, the gain factor is larger than the optical confinement factor, due to the zigzag propagation of the modal light ray in the core layers. For the TM modes, the existence of a nonzero electric field in the propagation direction results in a more complicated relation of the gain factor and the confinement factor. For an air-Si-SiO2 strong slab waveguide, the numerical results show that the modal gain can be larger than the material gain and the higher-order transverse mode can have an even larger modal gain than the fundamental mode, The efficiency of waveguiding photodetectors can be improved by applying the modal gain or loss characteristics in strong waveguides.
Resumo:
Thermal-induced interdiffusion in InAs/GaAs quantum dot superlattices is studied by high-resolution x-ray diffraction rocking curve and photoluminescence techniques. With increasing annealing temperatures, up to 300 meV a blueshift of the emission peak position and down to 16.6 meV a narrowing of the line width are found in the photoluminescence spectra, and respective intensity of the higher-order satellite peaks to lower-order ones in the x-ray rocking curves decreases. Dynamical theory is employed to simulate the measured x-ray diffraction data. Excellent agreement between the experimental curves and the simulations is achieved when the composition, thickness and stress variations caused by interdiffusion are taken into account. It is found that the significant In-Ga intermixing occurs even in the as-grown InAs/GaAs quantum dots. The estimated diffusion coefficient is 1.8 x 10(-17) cm(2) (.) s(-1) at 650 degreesC, 3.2 x 10(-17) cm(2 .) s(-1) at 750 degreesC, and 1.2 x 10(-14) cm(2 .) s(-1) at 850 degreesC.
Resumo:
The eigenmodes confined in the equilateral triangle resonator (ETR) are analyzed by deriving the eigenvalues and the mode field distributions and by the finite difference time domain (FDTD) technique. The analytical results show that the one-period-length for the mode light rays inside the ETR is the perimeter of the ETR, and the number of transverse modes is limited by the condition of total internal reflection. In addition, the sum of the longitudinal mode index and the transverse mode index should be an even number, which limits the number of confined modes again. Based on the FDTD technique and the Pade approximation, we calculate the mode resonant frequencies and the quality factors from the local maximum and the width of the spectral distribution of the intensity The numerical results of mode frequencies agree very well with the analytical results, and the quality factor of the fundamental mode is usually higher than that of the higher order transverse modes. The results show that the ETR is suitable to realize single-made operation as semiconductor microcavity lasers.
Resumo:
Interpolation attack was presented by Jakobsen and Knudsen at FSE'97. Interpolation attack is effective against ciphers that have a certain algebraic structure like the PURE cipher which is a prototype cipher, but it is difficult to apply the attack to real-world ciphers. This difficulty is due to the difficulty of deriving a low degree polynomial relation between ciphertexts and plaintexts. In other words, it is difficult to evaluate the security against interpolation attack. This paper generalizes the interpolation attack. The generalization makes easier to evaluate the security against interpolation attack. We call the generalized interpolation attack linear sum attack. We present an algorithm that evaluates the security of byte-oriented ciphers against linear sum attack. Moreover, we show the relationship between linear sum attack and higher order differential attack. In addition, we show the security of CRYPTON, E2, and RIJNDAEL against linear sum attack using the algorithm.
Resumo:
An automatic step adjustment (ASA) method for average power analysis (APA) technique used in fiber amplifiers is proposed in this paper for the first time. In comparison with the traditional APA technique, the proposed method has suggested two unique merits such as a higher order accuracy and an ASA mechanism, so that it can significantly shorten the computing time and improve the solution accuracy. A test example demonstrates that, by comparing to the APA technique, the proposed method increases the computing speed by more than a hundredfold under the same errors. By computing the model equations of erbium-doped fiber amplifiers, the numerical results show that our method can improve the solution accuracy by over two orders of magnitude at the same amplifying section number. The proposed method has the capacity to rapidly and effectively compute the model equations of fiber Raman amplifiers and semiconductor lasers. (c) 2006 Optical Society of America
Resumo:
Time-dependent thermal simulation of ridge-geometry InGaN laser diodes is carried out with a two-dimensional model. A high temperature in the waveguide layer and a large temperature step between the regions under and outside the ridge are generated due to the poor thermal conductivity of the sapphire substrate and the large threshold current and voltage. The temperature step is thought to have a strong influence on the characteristics of the laser diodes. Time-resolved measurements of light-current curves,spectra, and the far-field pattern of the InGaN laser diodes under pulsed operation are performed. The results show that the thermal lensing effect improves the confinement of the higher order modes and leads to a lower threshold current and a higher slope efficiency of the device while the high temperature in the active layer results in a drastic decrease in the slope efficiency.
Resumo:
An arch-shaped beam with different configurations under electrostatic loading experiences either the direct pull-in instability or the snap-through first and then the pull-in instability. When the pull-in instability occurs, the system collides with the electrode and adheres to it, which usually causes the system failure. When the snap-through instability occurs, the system experiences a discontinuous displacement to flip over without colliding with the electrode. The snap-through instability is an ideal actuation mechanism because of the following reasons: (1) after snap-through the system regains the stability and capability of withstanding further loading; (2) the system flips back when the loading is reduced, i.e. the system can be used repetitively; and (3) when approaching snap-through instability the system effective stiffness reduces toward zero, which leads to a fast flipping-over response. To differentiate these two types of instability responses for an arch-shaped beam is vital for the actuator design. For an arch-shaped beam under electrostatic loading, the nonlinear terms of the mid-plane stretching and the electrostatic loading make the analytical solution extremely difficult if not impossible and the related numerical solution is rather complex. Using the one mode expansion approximation and the truncation of the higher-order terms of the Taylor series, we present an analytical solution here. However, the one mode approximation and the truncation error of the Taylor series can cause serious error in the solution. Therefore, an error-compensating mechanism is also proposed. The analytical results are compared with both the experimental data and the numerical multi-mode analysis. The analytical method presented here offers a simple yet efficient solution approach by retaining good accuracy to analyze the instability of an arch-shaped beam under electrostatic loading.
Resumo:
将作者提出的数值摄动算法改进为区分离散单元内上游和下游并分别对通量进行高精度重构的双重数值摄动算法,与原(单重)摄动算法相比,双重摄动算法既提高了格式精度又明显扩大了格式的稳定域范围,利用双重摄动算法,即分别利用上游和下游基点变量的摄动重构将高阶流体力学关系及迎风机制耦合进二阶中心格式之中,由此构建了对流扩散方程的对网格Reynolds数的任意值均稳定(绝对稳定)高精度(四阶和八阶精度)三基点中心TVD差分格式,通过解析分析以及3个算例计算证实了构建格式的优良性能;3个算例包括一维线性、非线性(Burgers方程)和二维变系数对流扩散方程,数值计算表明:构建的格式在粗网格下不振荡,构建格式在粗网格时的最大误差L∞和均方误差L2与二阶中心格式在细网格时的相应误差一致,对线性方程,构建格式在细网格下可达到L2精度阶
Resumo:
Shot noise through a closed Aharonov-Bohm interferometer carrying a quantum dot in one of its two current paths is investigated. It is found that the shot noise can be modulated by the magnetic flux Phi, the dot level, and the direct tunneling. Due to the interference between the two transmission channels, the Kondo correlation manifests itself in the flux dependence of the shot noise, which exhibits oscillation behavior with a period of Phi(0)/2 (Phi(0) is the flux quantum) for small voltages below the Kondo temperature T-K. At voltages well above T-K or outside the Kondo regime, the shot noise is determined by high-energy Coulomb and hybridization processes, and its Aharonov-Bohm oscillations restore the fundamental period of Phi(0). As a result of its two-particle nature, the shot noise contains higher-order harmonics absent in the current, demonstrating the fact that the noise is more sensitive to the effects of quantum interference than the current.
Resumo:
We investigate the topological properties of N(N >= 1) disclination lines in cholesteric liquid crystals. The topological structure of N disclination lines is obtained with the Hopf index and Brouwer degree. Furthermore, the knotted x disclination loops is proposed with the Hopf invariant. And we consider the stability of such configuration based on the higher order interaction. At last, the evolution of the disclinations is discussed.
Resumo:
The expressions used for describing the angular distribution of oriented and aligned reagent molecules are derived. The algebraic forms of orientation and alignment parameters of molecules in the excited states are obtained for two-photon excitation. The reagent molecules after absorbing two-photon may produce the higher order orientation and alignment than doing one-photon. (C) 2002 Elsevier Science B.V. All rights reserved.