973 resultados para Halogenated organic compounds
Resumo:
Extraction/concentration is a crucial step for the analysis of organic compounds at trace level concentrations and dispersed in complex matrices. Solid-phase extraction (SPE) is one of the techniques used for this purpose. In this work, a low cost apparatus for SPE was developed that uses nitrogen under positive pressure and ensures the maintenance of the sample flow, while also allows the simultaneous extraction of different samples without cross-contamination and sample contact with plastic materials. For the system set up, easily accessible materials were used such as hypodermic needles, stainless steel tubes, rubber stoppers, and 3-way valves from serum delivery apparatus.
Resumo:
Screening of biomass of a new marine-derived strain of Penicillium roqueforti, as produced by liquid-state fermentation, led to the identification of several volatile organic compounds active in the fatty acid pathway as well as fragments produced by their catabolism, terpenoids, and metabolites from the shikimic acid pathway. In addition, five non-volatile organic compounds, triolein, ergosterol peroxide, 9(11)-dehydroergosterol peroxide, 4-hydroxybenzaldehyde, and d-mannitol, were isolated and identified by spectroscopy. The results showed that this fungal strain did not produce any mycotoxin in the culture conditions applied, and thus is useful for industrial applications, where high value-added biomolecules are generated.
Resumo:
The aim of this paper was to revive the accurate determination of the boiling point of organic compounds using the percolator technique developed in the 1960s. Although this method is simple, fast and efficient it is omitted from current textbooks. This method has several advantages over Siwoloboff such as high reproducibility and direct measurement of the boiling point of the sample obtained by observing the temperature of the vapor-liquid equilibrium. The experiments were performed in the organic chemistry laboratory but allow interdisciplinary integration with other disciplines of several academic areas.
Resumo:
Infusions of yerba mate obtained at different stages of industrialization were evaluated to determine the bioavailable fraction of Al. Adsorptive Cathodic Stripping Voltammetry using DASA (complexing agent) was applied to determine the labile fraction of Al at pH 5.0 and pH 8.0 for the total fraction of dissolved Al. The results indicate that on average 60% of Al is complexed with organic compounds, minimizing their bioavailability; however, the labile fraction exceeds by up to 4 times the maximum weekly intake recommended by the World Health Organization.
Resumo:
Seed-assisted synthesis of zeolites diminishes crystallization time and enables the industrial use of certain zeolites, which was conventionally unfeasible due to the complexity of synthesis and the cost of organic structure-directing agents. This study reports the primary results of zeolite crystallization in the presence of seeds, which are used as a substitute for organic compounds.
Resumo:
A two-step experiment is proposed for a third year class in experimental organic chemistry. Over a period of five weeks, the students synthesized calix[4]pyrrole, a receptor that is highly selective for fluoride, and a pyridinium N-phenolate dye. Subsequently, the students used the synthesized compounds to investigate a displacement assay on the basis of the competition in acetonitrile between fluoride and the dye for calix[4]pyrrole. The experiment increased the students' skills in organic synthesis and in the characterization of organic compounds, provided a very attractive and accessible illustration of important supramolecular phenomena, and allowed the study of a chromogenic chemosensor.
Resumo:
The impacts derived from the emission of volatile organic compounds (VOC) into the atmosphere can have harmful consequences for human health and the environment. In this regard, the present paper proposes the construction of a low-cost cold plasma reactor for the treatment of these compounds. Tests with the prototype were performed to confirm the efficiency for BTEX (benzene, toluene and xylene) samples. Degradation efficiency was confirmed by the gas chromatography method.
Resumo:
In the past few years, photoredox catalysis has become a powerful tool in the field of organic synthesis. Using this efficient method, it is possible to excite organic compounds from visible light and attain alternative mechanistic pathways for the formation of chemical bonds, a result which is not obtainable by classical methods. The rapid growth of work in the area of photoredox catalysis is due to its low cost, broad chemical utility protocols, and, especially, its relevancy from the green and sustainable chemistry viewpoints. Thus, this study proposes a brief theoretical discussion of and highlights recent advances in visible-light-induced photoredox catalysis through the analysis of catalytic cycles and intermediates.
Resumo:
The measurement of nuclear magnetic resonance parameters in an anisotropic media, such as residual dipolar coupling (RDC), has proven to be an excellent methodology for the refinement of chemical structures, being used as a complementary tool in the determination of the relative configuration, conformation, and constitution of organic compounds. In this study, we applied this methodology to determine the relative configuration of α-santonin, a natural product with four stereocenters, while assigning its prochiral methylene protons using only the RDCs obtained in a polyacrylonitrile polymer gel swollen in DMSO-d6.
Resumo:
An interesting practical experiment about the preparation of dye–sensitized solar cells (DSSC) using natural dyes were carried out by the undergraduate students in the chemistry course at UNICAMP . Natural dyes were extracted from blueberries (Vaccinium myrtillus L.), jabuticabas (Myrciaria cauliflora), raw and cooked beets (Beta vulgaris L.), and annattos (Bixa orellana L.), which were used to sensitize TiO2 films that composed the photoanode in the DSSC. A polymer electrolyte containing an iodide/triiodide redox couple was used in lieu of the use of liquid solutions to prevent any leakage in the devices. A maximum solar-to-electric energy conversion of 0.26 ± 0.02% was obtained for the solar cell prepared with annatto extracts. This experiment was an effective way to illustrate to the undergraduate students how to apply some of the chemical concepts that they learned during their chemistry course to produce electric energy from a clean and renewable energy source. Teachers could also exploit the basics of the electronic transitions in inorganic and organic compounds (e.g., metal-to-ligand charge transfer and ϖ-ϖ* transitions), thermodynamics (e.g., Gibbs free energy), acid–base reactions in the oxide solid surface and electrolyte, and band theory (i.e., the importance of the Fermi level energy).
Resumo:
The 2-methoxycinnamylidenepyruvic acid (2-MeO-HCP) was synthesized and characterized for nuclear magnetic resonance (¹H and 13C NMR), mass spectrometry (MS), Infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The application of DSC for purity determination is well documented in literature and is used in the analysis of pure organic compounds. The molecular geometry and vibrational frequencies of 2-MeO-HCP have been calculated.
Resumo:
The use of microorganisms to induce chemical modifications in organic molecules is a very useful tool in organic synthesis, to obtain biologically active substances. The fungus Cephalosporium aphidicola is known by its ability to hydroxylate several skeleton positions of many classes of organic compounds. In this work, the microbial transformation of ent-kaur-16-en-19-ol (1) by C. aphidicola, afforded two hydroxylated compounds, ent-kauran-16β,19-diol (2) and ent-kauran-16β,17,19-triol (3). Their structures were established by 1D and 2D-NMR studies. Both compounds were tested for their action on the growth of radical and shoot of Lactuca sativa.
Resumo:
Työssä käytiin läpi Porvoon jalostamon haihtuvien orgaanisten yhdisteiden päästömääritysmenetelmiä ja arvioitiin nykyisin käytössä olevien sekä uusien menetelmien soveltuvuutta Porvoon jalostamon päästömääritykseen. Nykyisten menetelmien arviointia tehtiin käymällä läpi eri alueiden 2000-luvun päästömäärät sekä vertaamalla päästömääriä muiden jalostamojen vastaaviin päästömääriin. Haihtuvista orgaanisista yhdisteistä puhuttaessa jätetään yleisesti metaani määritelmän ulkopuolelle ja käytetään termiä NMVOC-yhdisteet. Työssä laskettiin arvio Porvoon jalostamon metaanin päästömäärälle ja arvioitiin sen vaikutusta NMVOC-kokonaispäästömäärään. Metaanin kokonaispäästömäärien havaittiin olevan noin kymmenen kertaa haihtuvien orgaanisten yhdisteiden päästömääriä pienempiä, ja näin ollen niiden lisäämisellä NMVOC-päästöihin ei ole juuri vaikutusta. Myös menetelmien investointi- ja käyttökustannuksia, sekä pidemmän aikavälin kustannuksia arvioitiin. Kustannuksiltaan tällä hetkellä Porvoon jalostamolla käytössä olevat menetelmät ovat kustannustehokkaita. Uusista menetelmistä DIAL, SOF ja OGI ovat kustannuksiltaan huomattavasti kalliimpia, myös pitkän aikavälin vertailulla. Nykyisten menetelmien vuosittaiset kustannukset aiheutuvat mittausten vaatimista henkilötyötunneista. Uusista menetelmistä SOF ja DIAL vaativat ulkopuolisten mittaajien käyttämistä. Massavirran määrityksen suhteen vielä kehitysvaiheessa olevalla OGI-kameralla mitatessa voidaan käyttää mittaajina omaa henkilökuntaa. Toisin kuin DIAL- ja SOF-menetelmien laitteistot, OGI-kamera ostetaan omaksi ja näin ollen sitä voidaan käyttää tarpeen vaatiessa vuoden ympäri esimerkiksi suurien vuotajien paikallistamiseen ja LDAR-kiristysohjelman tukena. Tarkastelun perusteella olisi suositeltavaa tarkastaa nykyisin käytettävistä laskentamenetelmistä erityisesti prosessi- ja säiliöalueen sekä jätevesijärjestelmä päästömäärät käyttäen tarkempia DIAL-, SOF- tai myöhemmin OGI-menetelmiä ja muokata laskentamenetelmiä vastamaan näillä määritettyjä päästömääriä.
Resumo:
Original sludge from wastewater treatment plants (WWTPs) usually has a poor dewaterability. Conventionally, mechanical dewatering methods are used to increase the dry solids (DS) content of the sludge. However, sludge dewatering is an important economic factor in the operation of WWTPs, high water content in the final sludge cake is commonly related to an increase in transport and disposal costs. Electro‐dewatering could be a potential technique to reduce the water content of the final sludge cake, but the parameters affecting the performance of electro‐dewatering and the quality of the resulting sludge cake, as well as removed water, are not sufficiently well known. In this research, non‐pressure and pressure‐driven experiments were set up to investigate the effect of various parameters and experimental strategies on electro‐dewatering. Migration behaviour of organic compounds and metals was also studied. Application of electrical field significantly improved the dewatering performance in comparison to experiments without electric field. Electro‐dewatering increased the DS content of the sludge from 15% to 40 % in non‐pressure applications and from 8% to 41% in pressure‐driven applications. DS contents were significantly higher than typically obtained with mechanical dewatering techniques in wastewater treatment plant. The better performance of the pressure‐driven dewatering was associated to a higher current density at the beginning and higher electric field strength later on in the experiments. The applied voltage was one of the major parameters affecting dewatering time, water removal rate and DS content of the sludge cake. By decreasing the sludge loading rate, higher electrical field strength was established between the electrodes, which has a positive effect on an increase in DS content of the final sludge cake. However interrupted voltage application had anegative impact on dewatering in this study, probably because the off‐times were too long. Other factors affecting dewatering performance were associated to the original sludge characteristics and sludge conditioning. Anaerobic digestion of the sludge with high pH buffering capacity, polymer addition and freeze/thaw conditioning had a positive impact on dewatering. The impact of pH on electro‐dewatering was related to the surface charge of the particles measured as zeta‐potential. One of the differences between electro‐dewatering and mechanical dewatering technologies is that electro‐dewatering actively removes ionic compounds from the sludge. In this study, dissolution and migration of organic compounds (such as shortchain fatty acids), macro metals (Na, K, Ca, Mg, Fe) and trace metals (Ni, Mn, Zn, Cr) was investigated. The migration of the metals depended on the fractionation and electrical field strength. These compounds may have both negative and positive impacts on the reuse and recycling of the sludge and removed water. Based on the experimental results of this study, electro‐dewatering process can be optimized in terms of dewatering time, desired DS content, power consumption and chemical usage.