954 resultados para Gram-negative bacteria.
Resumo:
The objective of this work was to evaluate the effects of fire regimes and vegetation cover on the structure and dynamics of soil microbial communities, through phospholipid fatty acid (PLFA) analysis. Comparisons were made between native areas with different woody covers ("cerrado stricto sensu" and "campo sujo"), under different fire regimes, and a 20-year-old active palisadegrass pasture in the Central Plateau of Brazil. Microbial biomass was higher in the native plots than in the pasture, and the highest monthly values were observed during the rainy season in the native plots. No significant differences were observed between fire regimes or between communities from the two native vegetation types. However, the principal component (PC) analysis separated the microbial communities by vegetation cover (native x pasture) and season (wet x dry), accounting for 45.8% (PC1 and PC3) and 25.6% (PC2 and PC3), respectively, of the total PLFA variability. Changes in land cover and seasonal rainfall in Cerrado ecosystems have significant effects on the total density of soil microorganisms and on the abundance of microbial groups, especially Gram-negative and Gram-positive bacteria.
Resumo:
Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatly expanded by gene duplication, the largest family containing 77 putative ATP-binding transport proteins. In addition, a large proportion of the genetic capacity is devoted to the utilization of a variety of carbon sources, including many plant-derived molecules. The identification of five signal peptidase genes, as well as several genes for components of the secretion apparatus, is important given the capacity of Bacillus strains to secrete large amounts of industrially important enzymes. Many of the genes are involved in the synthesis of secondary metabolites, including antibiotics, that are more typically associated with Streptomyces species. The genome contains at least ten prophages or remnants of prophages, indicating that bacteriophage infection has played an important evolutionary role in horizontal gene transfer, in particular in the propagation of bacterial pathogenesis.
Resumo:
Given the low sensitivity of amoebal coculture, we developed a specific real-time PCR for the detection of Parachlamydia. The analytical sensitivity was high, and the inter- and intrarun variabilities were low. When the PCR was applied to nasopharyngeal aspirates, it was positive for six patients with bronchiolitis. Future studies should assess the role of Parachlamydia in bronchiolitis.
Resumo:
Non-typable Haemophilus influenzae (NTHi) is a Gram negative pathogen that causes acute respiratory infections and is associated with the progression of chronic respiratory diseases. Previous studies have established the existence of a remarkable genetic variability among NTHi strains. In this study we show that, in spite of a high level of genetic heterogeneity, NTHi clinical isolates display a prevalent molecular feature, which could confer fitness during infectious processes. A total of 111 non-isogenic NTHi strains from an identical number of patients, isolated in two distinct geographical locations in the same period of time, were used to analyse nine genes encoding bacterial surface molecules, and revealed the existence of one highly prevalent molecular pattern (lgtF+, lic2A+, lic1D+, lic3A+, lic3B+, siaA−, lic2C+, ompP5+, oapA+) displayed by 94.6% of isolates. Such a genetic profile was associated with a higher bacterial resistance to serum mediated killing and enhanced adherence to human respiratory epithelial cells.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
The antimicrobial properties of the hexane, hexane/EtOAc and methanol fractions of the fresh petioles of Sagittaria montevidensis ssp montevidensis (Alismataceae) were evaluated against fungi and Gram-negative and Gram-positive bacteria. A new abietatriene-type diterpenoid, 3β,7α-dihydroxi-abieta-8,11,13-triene and the known 3β-hydroxy-abieta-8,11,13-trien-7-one were isolated from the most active fraction tested and the structures of these compounds were elucidated by data including IR, EIMS, and 1D and 2D NMR spectra.
Resumo:
Tetracyclines exhibits activity to a broad range of Gram-negative and Gram-positive bacteria and this fact allied to the low toxicity, low cost, and the advantage of administration by oral route led to their indiscriminate use, which caused the appearance of bacterial resistance to these agents, wich has restricted its clinical utility, though new applications have emerged. On the other hand, the glycylcyclines, semi-synthetic products are similar to tetracyclines, which are active against many bacteria resistant to tetracycline and other classes of antibiotics. The purpose of this paper is to give an overview of this important class of antibiotics focusing on its coordination chemistry and possible applications.
Resumo:
Antibiotic resistance has been growing at an alarming rate and consequently the arsenal of effective antibiotics against Gram-negative and Gram-positive bacteria has dropped dramatically. In this sense there is a strong need to produce new substances that not only have good spectrum of activity, but having new mechanisms of action. In this regard, this paper emphasizes the coordination of metals to antibiotics as a strategy for reversing antibiotic resistance and production of new drugs, with a special focus on quinolones, fluoroquinolones, sulfonamides and tetracyclines.
Resumo:
Erwinia carotovora subsp. atroseptica (Eca), E. carotovora subsp. carotovora (Ecc) and E. chrysanthemi (Ech) may cause potato (Solanum tuberosum) blackleg. To determine the occurrence of these pathogens in the conditions found in the State of Rio Grande do Sul (RS), potato plants showing blackleg symptoms were harvested from 22 fields in nine counties in Serra do Nordeste, Planalto, Depressão Central, and Grandes Lagoas, from September to December of 1999 (Spring-Summer season). Green pepper (Capsicum annuum) fruits were used as a host to enrich for pectolytic erwinia from potato stems with blackleg symptoms. Bacteria were subsequently isolated on non-selective medium. Isolates that were Gram-negative, facultatively anaerobic, and pitted crystal-violet-pectate medium were tested for biochemical traits to identify the species and subspecies. Four hundred strains were identified as either Eca, Ecc or Ech. Although the three erwinias were found in RS potato fields, only three strains of Ech were found in one field. Frequencies of Eca and Ecc were 55 and 42%, respectively. Eight strains could not be assigned based on the biochemical characterization.
Resumo:
The objective of this research was to develop a primer for a polymerase chain reaction specific for Xylella fastidiosa strains that cause Pierce's Disease (PD) in grapes (Vitis vinifera). The DNA amplification of 23 different strains of X. fastidiosa, using a set of primers REP1-R (5'-IIIICGICGIATCCIGGC-3') and REP 2 (5'-ICGICTTATCIGGCCTAC-3') using the following program: 94 ºC/2 min; 35 X (94 ºC/1 min, 45 ºC/1 min and 72 ºC/1 min and 30 s) 72 ºC/5 min, produced a fragment of 630 bp that differentiated the strains that cause disease in grapes from the other strains. However, REP banding patterns could not be considered reliable for detection because the REP1-R and REP 2 primers correspond to repetitive sequences, which are found throughout the bacterial genome. The amplified product of 630 bp was eluted from the agarose gel, purified and sequenced. The nucleotide sequence information was used to identify and synthesize an specific oligonucleotide for X. fastidiosa strains that cause Pierce's Disease denominated Xf-1 (5'-CGGGGGTGTAGGAGGGGTTGT-3') which was used jointly with the REP-2 primer at the following conditions: 94 ºC/2 min; 35 X (94 ºC/1 min, 62 ºC/1 min; 72 ºC/1 min and 30 s) 72 ºC/10 min. The DNAs isolated from strains of X. fastidiosa from other hosts [almond (Prumus amygdalus), citrus (Citrus spp.), coffee (Coffea arabica), elm (Ulmus americana), mulberry (Morus rubra), oak (Quercus rubra), periwinkle wilt (Catharantus roseus), plums (Prunus salicina) and ragweed (Ambrosia artemisiifolia)] and also from other Gram negative and positive bacteria were submitted to amplification with a pair of primers Xf-1/REP 2 to verify its specificity. A fragment, about 350 bp, was amplified only when the DNA from strains of X. fastidiosa isolated from grapes was employed.
Resumo:
Abstract: The Enterobacteriaceae family contains potentially zoonotic bacteria, and their presence in canaries is often reported, though the current status of these in bird flocks is unknown. Therefore, this study aimed to identify the most common genera of enterobacteria from canaries (Serinus canaria) and their antimicrobial resistance profiles. From February to June of 2013, a total of 387 cloacal swab samples from eight domiciliary breeding locations of Fortaleza city, Brazil, were collected and 58 necropsies were performed in canaries, which belonged to the Laboratory of Ornithological Studies. The samples were submitted to microbiological procedure using buffered peptone water and MacConkey agar. Colonies were selected according to their morphological characteristics on selective agar and submitted for biochemical identification and antimicrobial susceptibility. A total of 61 isolates were obtained, of which 42 were from cloacal swabs and 19 from necropsies. The most isolated bacteria was Escherichia coli with twenty five strains, followed by fourteen Klebsiellaspp., twelve Enterobacterspp., seven Pantoea agglomerans, two Serratiaspp. and one Proteus mirabilis. The antimicrobial to which the strains presented most resistance was sulfonamides with 55.7%, followed by ampicillin with 54.1% and tetracycline with 39.3%. The total of multidrug-resistant bacteria (MDR) was 34 (55.7%). In conclusion, canaries harbor members of the Enterobacteriaceae family and common strains present a high antimicrobial resistance rate, with a high frequency of MDR bacteria.