910 resultados para Geothermal power plants
Resumo:
Based on the possibility of real-time interaction with three-dimensional environments through an advanced interface, Virtual Reality consist in the main technology of this work, used in the design of virtual environments based on real Hydroelectric Plants. Previous to the process of deploying a Virtual Reality System for operation, three-dimensional modeling and interactive scenes settings are very importante steps. However, due to its magnitude and complexity, power plants virtual environments generation, currently, presents high computing cost. This work aims to present a methodology to optimize the production process of virtual environments associated with real hydroelectric power plants. In partnership with electric utility CEMIG, several HPPs were used in the scope of this work. During the modeling of each one of them, the techiniques within the methodologie were addressed. After the evaluation of the computional techniques presented here, it was possible to confirm a reduction in the time required to deliver each hydroelectrical complex. Thus, this work presents the current scenario about development of virtual hydroelectric power plants and discusses the proposed methodology that seeks to optimize this process in the electricity generation sector.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
The rise of the twenty-first century has seen the further increase in the industrialization of Earth’s resources, as society aims to meet the needs of a growing population while still protecting our environmental and natural resources. The advent of the industrial bioeconomy – which encompasses the production of renewable biological resources and their conversion into food, feed, and bio-based products – is seen as an important step in transition towards sustainable development and away from fossil fuels. One sector of the industrial bioeconomy which is rapidly being expanded is the use of biobased feedstocks in electricity production as an alternative to coal, especially in the European Union.
As bioeconomy policies and objectives increasingly appear on political agendas, there is a growing need to quantify the impacts of transitioning from fossil fuel-based feedstocks to renewable biological feedstocks. Specifically, there is a growing need to conduct a systems analysis and potential risks of increasing the industrial bioeconomy, given that the flows within it are inextricably linked. Furthermore, greater analysis is needed into the consequences of shifting from fossil fuels to renewable feedstocks, in part through the use of life cycle assessment modeling to analyze impacts along the entire value chain.
To assess the emerging nature of the industrial bioeconomy, three objectives are addressed: (1) quantify the global industrial bioeconomy, linking the use of primary resources with the ultimate end product; (2) quantify the impacts of the expaning wood pellet energy export market of the Southeastern United States; (3) conduct a comparative life cycle assessment, incorporating the use of dynamic life cycle assessment, of replacing coal-fired electricity generation in the United Kingdom with wood pellets that are produced in the Southeastern United States.
To quantify the emergent industrial bioeconomy, an empirical analysis was undertaken. Existing databases from multiple domestic and international agencies was aggregated and analyzed in Microsoft Excel to produce a harmonized dataset of the bioeconomy. First-person interviews, existing academic literature, and industry reports were then utilized to delineate the various intermediate and end use flows within the bioeconomy. The results indicate that within a decade, the industrial use of agriculture has risen ten percent, given increases in the production of bioenergy and bioproducts. The underlying resources supporting the emergent bioeconomy (i.e., land, water, and fertilizer use) were also quantified and included in the database.
Following the quantification of the existing bioeconomy, an in-depth analysis of the bioenergy sector was conducted. Specifically, the focus was on quantifying the impacts of the emergent wood pellet export sector that has rapidly developed in recent years in the Southeastern United States. A cradle-to-gate life cycle assessment was conducted in order to quantify supply chain impacts from two wood pellet production scenarios: roundwood and sawmill residues. For reach of the nine impact categories assessed, wood pellet production from sawmill residues resulted in higher values, ranging from 10-31% higher.
The analysis of the wood pellet sector was then expanded to include the full life cycle (i.e., cradle-to-grave). In doing to, the combustion of biogenic carbon and the subsequent timing of emissions were assessed by incorporating dynamic life cycle assessment modeling. Assuming immediate carbon neutrality of the biomass, the results indicated an 86% reduction in global warming potential when utilizing wood pellets as compared to coal for electricity production in the United Kingdom. When incorporating the timing of emissions, wood pellets equated to a 75% or 96% reduction in carbon dioxide emissions, depending upon whether the forestry feedstock was considered to be harvested or planted in year one, respectively.
Finally, a policy analysis of renewable energy in the United States was conducted. Existing coal-fired power plants in the Southeastern United States were assessed in terms of incorporating the co-firing of wood pellets. Co-firing wood pellets with coal in existing Southeastern United States power stations would result in a nine percent reduction in global warming potential.
Resumo:
The construction industry is one of the largest consumers of raw materials and energy and one of the highest contributor to green-houses gases emissions. In order to become more sustainable it needs to reduce the use of both raw materials and energy, thus lim-iting its environmental impact. Developing novel technologies to integrate secondary raw materials (i.e. lightweight recycled aggre-gates and alkali activated “cementless” binders - geopolymers) in the production cycle of concrete is an all-inclusive solution to im-prove both sustainability and cost-efficiency of construction industry. SUS-CON “SUStainable, Innovative and Energy-Efficiency CONcrete, based on the integration of all-waste materials” is an European project (duration 2012-2015), which aim was the inte-gration of secondary raw materials in the production cycle of concrete, thus resulting in innovative, sustainable and cost-effective building solutions. This paper presents the main outcomes related to the successful scaling-up of SUS-CON concrete solutions in traditional production plants. Two European industrial concrete producers have been involved, to design and produce both pre-cast components (blocks and panels) and ready-mixed concrete. Recycled polyurethane foams and mixed plastics were used as aggre-gates, PFA (Pulverized Fuel Ash, a by-product of coal fuelled power plants) and GGBS (Ground Granulated Blast furnace Slag, a by-product of iron and steel industries) as binders. Eventually, the installation of SUS-CON concrete solutions on real buildings has been demonstrated, with the construction of three mock-ups located in Europe (Spain, Turkey and Romania)
Resumo:
The following report summarizes research activities on the project for the period December 1, 1986 to November 30, 1987. Research efforts for the second year deviated slightly from those described in the project proposal. By the end of the second year of testing, it was possible to begin evaluating how power plant operating conditions influenced the chemical and physical properties of fly ash obtained from one of the monitored power plants (Ottumwa Generating Station, OGS). Hence, several of the tasks initially assigned to the third year of the project (specifically tasks D, E, and F) were initiated during the second year of the project. Manpower constraints were balanced by delaying full scale implementation of the quantitative X-ray diffraction and differential thermal analysis tasks until the beginning of the third year of the project. Such changes should have little bearing on the outcome of the overall project.
Resumo:
Tutkimus koostuu kolmen Helsingissä sijaitsevan, kolmena eri aikakautena, 1910-, 1950- ja 1990-luvuilla, rakennetun voimalaitoksen arkkitehtuurista ja rakennustyypistä sekä niiden eroista ja erityisyyksistä samoin kuin näiden voimalaitosten roolista ja vaikutuksesta Helsingin kaupunkisuunnitteluun ja -rakentamiseen, kaupunkikuvaan sekä ympäristöestetiikkaan. Tutkimus on rajattu koskemaan erityyppisten voimalaitosten osalta yksinomaan kolmea helsinkiläistä kaupungissa sijaitsevaa voimalaitosta, Suvilahtea, Hanasaari-A:ta ja Vuosaaren A- ja B-laitoksia. Tutkimuksen tarkoituksena on ensinnäkin selvittää sekä periaatteessa että edellä mainittujen kolmen esimerkkikohteen kautta seikkoja, jotka ovat vaikuttaneet kunkin voimalaitoksen arkkitehtuuriin ja rakennustyyppiin kunakin aikakautena. Kaupunkivoimalan olennaiset elementit ovat korkea savupiippu, mittava polttoainevarasto sekä massiiviset rakennusmassat, jotka vaativat runsasta maankäyttöä. Toiseksi tutkimuksessa paneudutaan kaupunkisuunnitteluun laitoksen sijoittumisen osalta sekä ajallisesti että paikallisesti. Kolmanneksi selvitetään kaupunkikuvallisia ja ympäristöesteettisiä seikkoja, sekä niiden vaikutusten kehitystä voimalaitoksen toteutuksen ja nykyhetken kesken. Tutkimuksessa haetaan vastausta kysymykseen, miten Helsingissä sijaitseva voimalaitos arkkitehtuuriltaan, rakennustyypiltään ja sijoitukseltaan on soveltunut ja jatkossa soveltuu kaupunkisuunnittelun kannalta kaupunkikuvallisesti sekä ympäristöesteettisesti kyseiseen kaupunkiympäristöön. Tutkimus selvittää myös sitä ilmeistä ristiriitaa, joka syntyy kaupungin kehittyessä ja laajentuessa, jolloin voimalaitos infrastruktuurinsa ja useimmiten suunnattoman kokonsa vuoksi edustaa pysyvyyttä rakentuvan alueen sisällä. Tässä yhteydessä tutkimuksessa pohditaan esimerkkikohteiden avulla voimalaitoksen säilyttämistä puoltavia rakennustaiteellisia arvoja, mahdollista korvattavuutta, ja siinä yhteydessä haetaan vastauksia jäljelle jäävälle laitosrakennukselle kaupunkisuunnittelun kannalta asetettavista uusiokäytön vaatimuksista ja mahdollisuuksista. Tutkimuksen metodologia on sekä kvantitatiivisesti että kvalitatiivisesti historiallinen, esimerkkikohteita käsiteltäessä tarvittavassa määrin myös mikrohistoriallinen.
Resumo:
Resource management policies are frequently designed and planned to target specific needs of particular sectors, without taking into account the interests of other sectors who share the same resources. In a climate of resource depletion, population growth, increase in energy demand and climate change awareness, it is of great importance to promote the assessment of intersectoral linkages and, by doing so, understand their effects and implications. This need is further augmented when common use of resources might not be solely relevant at national level, but also when the distribution of resources ranges over different nations. This dissertation focuses on the study of the energy systems of five south eastern European countries, which share the Sava River Basin, using a water-food(agriculture)-energy nexus approach. In the case of the electricity generation sector, the use of water is essential for the integrity of the energy systems, as the electricity production in the riparian countries relies on two major technologies dependent on water resources: hydro and thermal power plants. For example, in 2012, an average of 37% of the electricity production in the SRB countries was generated by hydropower and 61% in thermal power plants. Focusing on the SRB, in terms of existing installed capacities, the basin accommodates close to a tenth of all hydropower capacity while providing water for cooling to 42% of the net capacity of thermal power currently in operation in the basin. This energy-oriented nexus study explores the dependency on the basin’s water resources of the energy systems in the region for the period between 2015 and 2030. To do so, a multi-country electricity model was developed to provide a quantification ground to the analysis, using the open-source software modelling tool OSeMOSYS. Three main areas are subject to analysis: first, the impact of energy efficiency and renewable energy strategies in the electricity generation mix; secondly, the potential impacts of climate change under a moderate climate change projection scenario; and finally, deriving from the latter point, the cumulative impact of an increase in water demand in the agriculture sector, for irrigation. Additionally, electricity trade dynamics are compared across the different scenarios under scrutiny, as an effort to investigate the implications of the aforementioned factors in the electricity markets in the region.
Resumo:
New methods of nuclear fuel and cladding characterization must be developed and implemented to enhance the safety and reliability of nuclear power plants. One class of such advanced methods is aimed at the characterization of fuel performance by performing minimally intrusive in-core, real time measurements on nuclear fuel on the nanometer scale. Nuclear power plants depend on instrumentation and control systems for monitoring, control and protection. Traditionally, methods for fuel characterization under irradiation are performed using a “cook and look” method. These methods are very expensive and labor-intensive since they require removal, inspection and return of irradiated samples for each measurement. Such fuel cladding inspection methods investigate oxide layer thickness, wear, dimensional changes, ovality, nuclear fuel growth and nuclear fuel defect identification. These methods are also not suitable for all commercial nuclear power applications as they are not always available to the operator when needed. Additionally, such techniques often provide limited data and may exacerbate the phenomena being investigated. This thesis investigates a novel, nanostructured sensor based on a photonic crystal design that is implemented in a nuclear reactor environment. The aim of this work is to produce an in-situ radiation-tolerant sensor capable of measuring the deformation of a nuclear material during nuclear reactor operations. The sensor was fabricated on the surface of nuclear reactor materials (specifically, steel and zirconium based alloys). Charged-particle and mixed-field irradiations were both performed on a newly-developed “pelletron” beamline at Idaho State University's Research and Innovation in Science and Engineering (RISE) complex and at the University of Maryland's 250 kW Training Reactor (MUTR). The sensors were irradiated to 6 different fluences (ranging from 1 to 100 dpa), followed by intensive characterization using focused ion beam (FIB), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) to investigate the physical deformation and microstructural changes between different fluence levels, to provide high-resolution information regarding the material performance. Computer modeling (SRIM/TRIM) was employed to simulate damage to the sensor as well as to provide significant information concerning the penetration depth of the ions into the material.
Resumo:
The main aim of this study was to evaluate the impact of the urban pollution plume from the city of Manaus by emissions from mobile and stationary sources in the atmospheric pollutants concentrations of the Amazon region, by using The Weather Research and Forecasting with Chemistry (WRF-Chem) model. The air pollutants analyzed were CO, NOx, SO2, O3, PM2.5, PM10 and VOCs. The model simulations have been configured with a grid spacing of 3 km, with 190 x and 136 y grid points in horizontal spacing, centered in the city of Manaus during the period of 17 and 18 of March 2014. The anthropogenic emissions inventories have gathered from mobile sources that were estimated the emissions of light and heavy-duty vehicles classes. In addition, the stationary sources have considered the thermal power plants by the type of energy sources used in the region as well as the emissions from the refinery located in Manaus. Various scenarios have been defined with numerical experiments that considered only emissions by biogenic, mobile and stationary sources, and replacement fuel from thermal power plant, along with a future scenario consisting with twice as much anthropogenic emissions. A qualitative assessment of simulation with base scenario has also been carried out, which represents the conditions of the region in its current state, where several statistical methods were used in order to compare the results of air pollutants and meteorological fields with observed ground-based data located in various points in the study grid. The qualitative analysis showed that the model represents satisfactorily the variables analyzed from the point of view of the adopted parameters. Regarding the simulations, defined from the base scenarios, the numerical experiments indicate relevant results such as: it was found that the stationary sources scenario, where the thermal power plants are predominant, resulted in the highest concentrations, for all air pollutants evaluated, except for carbon monoxide when compared to the vehicle emissions scenario; The replacement of the energy matrix of current thermal power plants for natural gas have showed significant reductions in pollutants analyzed, for instance, 63% reductions of NOx in the contribution of average concentration in the study grid; A significant increase in the concentrations of chemical species was observed in a futuristic scenario, reaching up to a 81% increase in peak concentrations of SO2 in the study area. The spatial distributions of the scenarios have showed that the air pollution plume from Manaus is predominantly west and southwest, where it can reach hundreds of kilometers to areas dominated by original soil covering.