975 resultados para Geary, John White, 1819-1873.
Resumo:
Combining datasets across independent studies can boost statistical power by increasing the numbers of observations and can achieve more accurate estimates of effect sizes. This is especially important for genetic studies where a large number of observations are required to obtain sufficient power to detect and replicate genetic effects. There is a need to develop and evaluate methods for joint-analytical analyses of rich datasets collected in imaging genetics studies. The ENIGMA-DTI consortium is developing and evaluating approaches for obtaining pooled estimates of heritability through meta-and mega-genetic analytical approaches, to estimate the general additive genetic contributions to the intersubject variance in fractional anisotropy (FA) measured from diffusion tensor imaging (DTI). We used the ENIGMA-DTI data harmonization protocol for uniform processing of DTI data from multiple sites. We evaluated this protocol in five family-based cohorts providing data from a total of 2248 children and adults (ages: 9-85) collected with various imaging protocols. We used the imaging genetics analysis tool, SOLAR-Eclipse, to combine twin and family data from Dutch, Australian and Mexican-American cohorts into one large "mega-family". We showed that heritability estimates may vary from one cohort to another. We used two meta-analytical (the sample-size and standard-error weighted) approaches and a mega-genetic analysis to calculate heritability estimates across-population. We performed leave-one-out analysis of the joint estimates of heritability, removing a different cohort each time to understand the estimate variability. Overall, meta- and mega-genetic analyses of heritability produced robust estimates of heritability.
Resumo:
Several common genetic variants have recently been discovered that appear to influence white matter microstructure, as measured by diffusion tensor imaging (DTI). Each genetic variant explains only a small proportion of the variance in brain microstructure, so we set out to explore their combined effect on the white matter integrity of the corpus callosum. We measured six common candidate single-nucleotide polymorphisms (SNPs) in the COMT, NTRK1, BDNF, ErbB4, CLU, and HFE genes, and investigated their individual and aggregate effects on white matter structure in 395 healthy adult twins and siblings (age: 20-30 years). All subjects were scanned with 4-tesla 94-direction high angular resolution diffusion imaging. When combined using mixed-effects linear regression, a joint model based on five of the candidate SNPs (COMT, NTRK1, ErbB4, CLU, and HFE) explained ∼ 6% of the variance in the average fractional anisotropy (FA) of the corpus callosum. This predictive model had detectable effects on FA at 82% of the corpus callosum voxels, including the genu, body, and splenium. Predicting the brain's fiber microstructure from genotypes may ultimately help in early risk assessment, and eventually, in personalized treatment for neuropsychiatric disorders in which brain integrity and connectivity are affected.
Resumo:
Fractional anisotropy (FA), a very widely used measure of fiber integrity based on diffusion tensor imaging (DTI), is a problematic concept as it is influenced by several quantities including the number of dominant fiber directions within each voxel, each fiber's anisotropy, and partial volume effects from neighboring gray matter. High-angular resolution diffusion imaging (HARDI) can resolve more complex diffusion geometries than standard DTI, including fibers crossing or mixing. The tensor distribution function (TDF) can be used to reconstruct multiple underlying fibers per voxel, representing the diffusion profile as a probabilistic mixture of tensors. Here we found that DTIderived mean diffusivity (MD) correlates well with actual individual fiber MD, but DTI-derived FA correlates poorly with actual individual fiber anisotropy, and may be suboptimal when used to detect disease processes that affect myelination. Analysis of the TDFs revealed that almost 40% of voxels in the white matter had more than one dominant fiber present. To more accurately assess fiber integrity in these cases, we here propose the differential diffusivity (DD), which measures the average anisotropy based on all dominant directions in each voxel.
Resumo:
Recent advances in diffusion-weighted MRI (DWI) have enabled studies of complex white matter tissue architecture in vivo. To date, the underlying influence of genetic and environmental factors in determining central nervous system connectivity has not been widely studied. In this work, we introduce new scalar connectivity measures based on a computationally-efficient fast-marching algorithm for quantitative tractography. We then calculate connectivity maps for a DTI dataset from 92 healthy adult twins and decompose the genetic and environmental contributions to the variance in these metrics using structural equation models. By combining these techniques, we generate the first maps to directly examine genetic and environmental contributions to brain connectivity in humans. Our approach is capable of extracting statistically significant measures of genetic and environmental contributions to neural connectivity.
Resumo:
We introduce a framework for population analysis of white matter tracts based on diffusion-weighted images of the brain. The framework enables extraction of fibers from high angular resolution diffusion images (HARDI); clustering of the fibers based partly on prior knowledge from an atlas; representation of the fiber bundles compactly using a path following points of highest density (maximum density path; MDP); and registration of these paths together using geodesic curve matching to find local correspondences across a population. We demonstrate our method on 4-Tesla HARDI scans from 565 young adults to compute localized statistics across 50 white matter tracts based on fractional anisotropy (FA). Experimental results show increased sensitivity in the determination of genetic influences on principal fiber tracts compared to the tract-based spatial statistics (TBSS) method. Our results show that the MDP representation reveals important parts of the white matter structure and considerably reduces the dimensionality over comparable fiber matching approaches.
Resumo:
Background. The majority of studies investigating the neural mechanisms underlying treatment-induced recovery in aphasia have focused on the cortical regions associated with language processing. However, the integrity of the white matter connecting these regions may also be crucial to understanding treatment mechanisms. Objective. This study investigated the integrity of the arcuate fasciculus (AF) and uncinate fasciculus (UF) before and after treatment for anomia in people with aphasia. Method. Eight people with aphasia received 12 treatment sessions to improve naming; alternating between phonologically-based and semantic-based tasks, with high angular resolution diffusion imaging conducted pre and post treatment. The mean generalized fractional anisotropy (GFA), a measure of fiber integrity, and number of fibers in the AF and UF were compared pre and post treatment, as well as with a group of 14 healthy older controls. Results. Pre treatment, participants with aphasia had significantly fewer fibers and lower mean GFA in the left AF compared with controls. Post treatment, mean GFA increased in the left AF to be statistically equivalent to controls. Additionally, mean GFA in the left AF pre and post treatment positively correlated with maintenance of the phonologically based treatment. No differences were found in the right AF, or the UF in either hemisphere, between participants with aphasia and controls, and no changes were observed in these tracts following treatment. Conclusions. Anomia treatments may improve the integrity of the white matter connecting cortical language regions. These preliminary results add to the understanding of the mechanisms underlying treatment outcomes in people with aphasia post stroke.
Resumo:
Several common genetic variants influence cholesterol levels, which play a key role in overall health. Myelin synthesis and maintenance are highly sensitive to cholesterol concentrations, and abnormal cholesterol levels increase the risk for various brain diseases, including Alzheimer's disease. We report significant associations between higher serum cholesterol (CHOL) and high-density lipoprotein levels and higher fractional anisotropy in 403 young adults (23.8 ± 2.4years) scanned with diffusion imaging and anatomic magnetic resonance imaging at 4Tesla. By fitting a multi-locus genetic model within white matter areas associated with CHOL, we found that a set of 18 cholesterol-related, single-nucleotide polymorphisms implicated in Alzheimer's disease risk predicted fractional anisotropy. We focused on the single-nucleotide polymorphism with the largest individual effects, CETP (rs5882), and found that increased G-allele dosage was associated with higher fractional anisotropy and lower radial and mean diffusivities in voxel-wise analyses of the whole brain. A follow-up analysis detected white matter associations with rs5882 in the opposite direction in 78 older individuals (74.3 ± 7.3years). Cholesterol levels may influence white matter integrity, and cholesterol-related genes may exert age-dependent effects on the brain.
Resumo:
Several genetic variants are thought to influence white matter (WM) integrity, measured with diffusion tensor imaging (DTI). Voxel based methods can test genetic associations, but heavy multiple comparisons corrections are required to adjust for searching the whole brain and for all genetic variants analyzed. Thus, genetic associations are hard to detect even in large studies. Using a recently developed multi-SNP analysis, we examined the joint predictive power of a group of 18 cholesterol-related single nucleotide polymorphisms (SNPs) on WM integrity, measured by fractional anisotropy. To boost power, we limited the analysis to brain voxels that showed significant associations with total serum cholesterol levels. From this space, we identified two genes with effects that replicated in individual voxel-wise analyses of the whole brain. Multivariate analyses of genetic variants on a reduced anatomical search space may help to identify SNPs with strongest effects on the brain from a broad panel of genes.
Resumo:
Diffusion weighted magnetic resonance imaging is a powerful tool that can be employed to study white matter microstructure by examining the 3D displacement profile of water molecules in brain tissue. By applying diffusion-sensitized gradients along a minimum of six directions, second-order tensors (represented by three-by-three positive definite matrices) can be computed to model dominant diffusion processes. However, conventional DTI is not sufficient to resolve more complicated white matter configurations, e.g., crossing fiber tracts. Recently, a number of high-angular resolution schemes with more than six gradient directions have been employed to address this issue. In this article, we introduce the tensor distribution function (TDF), a probability function defined on the space of symmetric positive definite matrices. Using the calculus of variations, we solve the TDF that optimally describes the observed data. Here, fiber crossing is modeled as an ensemble of Gaussian diffusion processes with weights specified by the TDF. Once this optimal TDF is determined, the orientation distribution function (ODF) can easily be computed by analytic integration of the resulting displacement probability function. Moreover, a tensor orientation distribution function (TOD) may also be derived from the TDF, allowing for the estimation of principal fiber directions and their corresponding eigenvalues.
Resumo:
Background: Body mass index (BMI) is used to diagnose obesity. However, its ability to predict the percentage fat mass (%FM) reliably is doubtful. Therefore validity of BMI as a diagnostic tool of obesity is questioned. Aim: This study is focused on determining the ability of BMI-based cut-off values in diagnosing obesity among Australian children of white Caucasian and Sri Lankan origin. Subjects and methods: Height and weight was measured and BMI (W/H2) calculated. Total body water was determined by deuterium dilution technique and fat free mass and hence fat mass derived using age- and gender-specific constants. A %FM of 30% for girls and 20% for boys was considered as the criterion cut-off level for obesity. BMI-based obesity cut-offs described by the International Obesity Task Force (IOTF), CDC/NCHS centile charts and BMI-Z were validated against the criterion method. Results: There were 96 white Caucasian and 42 Sri Lankan children. Of the white Caucasians, 19 (36%) girls and 29 (66%) boys, and of the Sri Lankans 7 (46%) girls and 16 (63%) boys, were obese based on %FM. The FM and BMI were closely associated in both Caucasians (r = 0.81, P<0.001) and Sri Lankans (r = 0.92, P<0.001). Percentage FM and BMI also had a lower but significant association. Obesity cut-off values recommended by IOTF failed to detect a single case of obesity in either group. However, NCHS and BMI-Z cut-offs detected cases of obesity with low sensitivity. Conclusions: BMI is a poor indicator of percentage fat and the commonly used cut-off values were not sensitive enough to detect cases of childhood obesity in this study. In order to improve the diagnosis of obesity, either BMI cut-off values should be revised to increase the sensitivity or the possibility of using other indirect methods of estimating the %FM should be explored.
Resumo:
Background: There are persistent concerns about litigation in the dental and medical professions. These concerns arise in a setting where general dentists are more frequently undertaking a wider range of oral surgery procedures, potentially increasing legal risk. Methods: Judicial cases dealing with medical negligence in the fields of general dentistry (oral surgery procedure) and Oral and Maxillofacial Surgery were located using the three main legal databases. Relevant cases were analysed to determine the procedures involved, the patients’ claims of injury, findings of negligence, and damages awarded. A thematic analysis of the cases was undertaken to determine trends. Results: Fifteen cases over a twenty-year period were located across almost all Australian jurisdictions (eight cases involved general dentists; seven cases involved Oral and Maxillofacial Surgeons). Eleven of the fifteen cases involved determinations of whether or not the practitioner had failed in their duty of care; negligence was found in six cases. Eleven of the fifteen cases related to molar extractions (eight specifically to third molar). Conclusions: Dental and medical practitioners wanting to manage legal risk should have regard to circumstances arising in judicial cases. Adequate warning of risks is critical, as is offering referral in appropriate cases. Pre-operative radiographs, good medical records, and processes to ensure appropriate follow-up are also important.
Resumo:
Objective - To investigate the HLA class I associations of ankylosing spondylitis (AS) in the white population, with particular reference to HLA-B27 subtypes. Methods - HLA-B27 and -B60 typing was performed in 284 white patients with AS. Allele frequencies of HLA-B27 and HLA-B60 from 5926 white bone marrow donors were used for comparison. HLA-B27 subtyping was performed by single strand conformation polymorphism (SSCP) in all HLA-B27 positive AS patients, and 154 HLA-B27 positive ethnically matched blood donors. Results - The strong association of HLA-B27 and AS was confirmed (odds ratio (OR) 171, 95% confidence interval (CI) 135 to 218; p < 10-99). The association of HLA-B60 with AS was confirmed in HLA-B27 positive cases (OR 3.6, 95% CI 2.1 to 6.3; p < 5 x 10-5), and a similar association was demonstrated in HLA-B27 negative AS (OR 3.5, 95% CI 1.1 to 11.4; p < 0.05). No significant difference was observed in the frequencies of HLA-B27 allelic subtypes in patients and controls (HLA-B*2702, three of 172 patients v five of 154 controls; HLA-B*2705, 169 of 172 patients v 147 of 154 controls; HkA-B*2708, none of 172 patients v two of 154 controls), and no novel HLA-B27 alleles were detected. Conclusion - HLA-B27 and -B60 are associated with susceptibility to AS, but differences in BLA-B27 subtype do not affect susceptibility to AS in this white population.
Resumo:
Objective. To analyze the effect of HLA-DR genes on susceptibility to and severity of ankylosing spondylitis (AS). Methods. Three hundred sixty- three white British AS patients were studied; 149 were carefully assessed for a range of clinical manifestations, and disease severity was assessed using a structured questionnaire. Limited HLA class I typing and complete HLA-DR typing were performed using DNA-based methods. HLA data from 13,634 healthy white British bone marrow donors were used for comparison. Results. A significant association between DR1 and AS was found, independent of HLA-B27 (overall odds ratio [OR] 1.4, 95% confidence interval [95% CI] 1.1-1.8, P = 0.02; relative risk [RR] 2.7, 95% CI 1.5-4.8, P = 6 x 10-4 among homozygotes; RR 2.1, 95% CI 1.5-2.8, P = 5 x 10-6 among heterozygotes). A large but weakly significant association between DR8 and AS was noted, particularly among DR8 homozygotes (RR 6.8, 95% CI 1.6-29.2, P = 0.01 among homozygotes; RR 1.6, 95% CI 1.0-2.7, P = 0.07 among heterozygotes). A negative association with DR12 (OR 0.22, 95% CI 0.09-0.5, P = 0.001) was noted. HLA-DR7 was associated with younger age at onset of disease (mean age at onset 18 years for DR7-positive patients and 23 years for DR7-negative patients; Z score 3.21, P = 0.001). No other HLA class I or class H associations with disease severity or with different clinical manifestations of AS were found. Conclusion. The results of this study suggest that HLA-DR genes may have a weak effect on susceptibility to AS independent of HLA-B27, but do not support suggestions that they affect disease severity or different clinical manifestations.
Resumo:
Objective. To localize the regions containing genes that determine susceptibility to ankylosing spondylitis (AS). Methods. One hundred five white British families with 121 affected sibling pairs with AS were recruited, largely from the Royal National Hospital for Rheumatic Diseases AS database. A genome-wide linkage screen was undertaken using 254 highly polymorphic microsatellite markers from the Medical Research Council (UK) (MRC) set. The major histocompatibility complex (MHC) region was studied more intensively using 5 microsatellites lying within the HLA class III region and HLA-DRB1 typing. The Analyze package was used for 2-point analysis, and GeneHunter for multipoint analysis. Results. When only the MRC set was considered, 11 markers in 7 regions achieved a P value of ≤0.01. The maximum logarithm of odds score obtained was 3.8 (P = 1.4 x 10-5) using marker D6S273, which lies in the HLA class III region. A further marker used in mapping of the MHC class III region achieved a LOD score of 8.1 (P = 1 x 10-9). Nine of 118 affected sibling pairs (7.6%) did not share parental haplotypes identical by descent across the MHC, suggesting that only 31% of the susceptibility to AS is coded by genes linked to the MHC. The maximum non-MHC LOD score obtained was 2.6 (P = 0.0003) for marker D16S422. Conclusion. The results of this study confirm the strong linkage of the MHC with AS, and provide suggestive evidence regarding the presence and location of non-MHC genes influencing susceptibility to the disease.
Resumo:
Objective Ankylosing spondylitis (AS) is a highly heritable common inflammatory arthritis that targets the spine and sacroiliac joints of the pelvis, causing pain and stiffness and leading eventually to joint fusion. Although previous studies have shown a strong association of IL23R with AS in white Europeans, similar studies in East Asian populations have shown no association with common variants of IL23R, suggesting either that IL23R variants have no role or that rare genetic variants contribute. The present study was undertaken to screen IL23R to identify rare variants associated with AS in Han Chinese. Methods A 170-kb region containing IL23R and its flanking regions was sequenced in 50 patients with AS and 50 ethnically matched healthy control subjects from a Han Chinese population. In addition, the 30-kb region of peak association in white Europeans was sequenced in 650 patients with AS and 1,300 healthy controls. Validation genotyping was undertaken in 846 patients with AS and 1,308 healthy controls. Results We identified 1,047 variants, of which 729 were not found in the dbSNP genomic build 130. Several potentially functional rare variants in IL23R were identified, including one nonsynonomous single-nucleotide polymorphism (nsSNP), Gly149Arg (position 67421184 GA on chromosome 1). Validation genotyping showed that the Gly149Arg variant was associated with AS (odds ratio 0.61, P = 0.0054). Conclusion This is the first study to implicate rare IL23R variants in the pathogenesis of AS. The results identified a low-frequency nsSNP with predicted loss-of-function effects that was protectively associated with AS in Han Chinese, suggesting that decreased function of the interleukin-23 (IL-23) receptor protects against AS. These findings further support the notion that IL-23 signaling has an important role in the pathogenesis of AS.