754 resultados para Fuzzy logic system


Relevância:

80.00% 80.00%

Publicador:

Resumo:

These are the full proceedings of the conference.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we present the design and analysis of an intonation model for text-to-speech (TTS) synthesis applications using a combination of Relational Tree (RT) and Fuzzy Logic (FL) technologies. The model is demonstrated using the Standard Yorùbá (SY) language. In the proposed intonation model, phonological information extracted from text is converted into an RT. RT is a sophisticated data structure that represents the peaks and valleys as well as the spatial structure of a waveform symbolically in the form of trees. An initial approximation to the RT, called Skeletal Tree (ST), is first generated algorithmically. The exact numerical values of the peaks and valleys on the ST is then computed using FL. Quantitative analysis of the result gives RMSE of 0.56 and 0.71 for peak and valley respectively. Mean Opinion Scores (MOS) of 9.5 and 6.8, on a scale of 1 - -10, was obtained for intelligibility and naturalness respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

General Regression Neuro-Fuzzy Network, which combines the properties of conventional General Regression Neural Network and Adaptive Network-based Fuzzy Inference System is proposed in this work. This network relates to so-called “memory-based networks”, which is adjusted by one-pass learning algorithm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper is described a didactic methodology combining current e-learning methods and the support of Intelligent Agents technologies. The aim is to favor the synthesis among theoretical approach and based practical approach using the so-called Intelligent Agent, software that exploits the Artificial Intelligence and that operates as tutor, facilitating the consumers in the training operations. The paper illustrates how such new Intelligent Agent algorithm (IA) is used in the training of employees working in the transportation sector, thanks to the experience gained with the PARMENIDE project - Promoting Advanced Resources and Methodologies for New Teaching and Learning Solutions in Digital Education.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As the Semantic Web is an open, complex and constantly evolving medium, it is the norm, but not exception that information at different sites is incomplete or inconsistent. This poses challenges for the engineering and development of agent systems on the Semantic Web, since autonomous software agents need to understand, process and aggregate this information. Ontology language OWL provides core language constructs to semantically markup resources on the Semantic Web, on which software agents interact and cooperate to accomplish complex tasks. However, as OWL was designed on top of (a subset of) classic predicate logic, it lacks the ability to reason about inconsistent or incomplete information. Belief-augmented Frames (BAF) is a frame-based logic system that associates with each frame a supporting and a refuting belief value. In this paper, we propose a new ontology language Belief-augmented OWL (BOWL) by integrating OWL DL and BAF to incorporate the notion of confidence. BOWL is paraconsistent, hence it can perform useful reasoning services in the presence of inconsistencies and incompleteness. We define the abstract syntax and semantics of BOWL by extending those of OWL. We have proposed reasoning algorithms for various reasoning tasks in the BOWL framework and we have implemented the algorithms using the constraint logic programming framework. One example in the sensor fusion domain is presented to demonstrate the application of BOWL.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Global connectivity, for anyone, at anyplace, at anytime, to provide high-speed, high-quality, and reliable communication channels for mobile devices, is now becoming a reality. The credit mainly goes to the recent technological advances in wireless communications comprised of a wide range of technologies, services, and applications to fulfill the particular needs of end-users in different deployment scenarios (Wi-Fi, WiMAX, and 3G/4G cellular systems). In such a heterogeneous wireless environment, one of the key ingredients to provide efficient ubiquitous computing with guaranteed quality and continuity of service is the design of intelligent handoff algorithms. Traditional single-metric handoff decision algorithms, such as Received Signal Strength (RSS) based, are not efficient and intelligent enough to minimize the number of unnecessary handoffs, decision delays, and call-dropping and/or blocking probabilities. This research presented a novel approach for the design and implementation of a multi-criteria vertical handoff algorithm for heterogeneous wireless networks. Several parallel Fuzzy Logic Controllers were utilized in combination with different types of ranking algorithms and metric weighting schemes to implement two major modules: the first module estimated the necessity of handoff, and the other module was developed to select the best network as the target of handoff. Simulations based on different traffic classes, utilizing various types of wireless networks were carried out by implementing a wireless test-bed inspired by the concept of Rudimentary Network Emulator (RUNE). Simulation results indicated that the proposed scheme provided better performance in terms of minimizing the unnecessary handoffs, call dropping, and call blocking and handoff blocking probabilities. When subjected to Conversational traffic and compared against the RSS-based reference algorithm, the proposed scheme, utilizing the FTOPSIS ranking algorithm, was able to reduce the average outage probability of MSs moving with high speeds by 17%, new call blocking probability by 22%, the handoff blocking probability by 16%, and the average handoff rate by 40%. The significant reduction in the resulted handoff rate provides MS with efficient power consumption, and more available battery life. These percentages indicated a higher probability of guaranteed session continuity and quality of the currently utilized service, resulting in higher user satisfaction levels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trenchless methods have been considered to be a viable solution for pipeline projects in urban areas. Their applicability in pipeline projects is expected to increase with the rapid advancements in technology and emerging concerns regarding social costs related to trenching methods. Selecting appropriate project delivery system (PDS) is a key to the success of trenchless projects. To ensure success of the project, the selected project delivery should be tailored to trenchless project specific characteristics and owner needs, since the effectiveness of project delivery systems differs based on different project characteristics and owners requirements. Since different trenchless methods have specific characteristics such rate of installation, lengths of installation, and accuracy, the same project delivery systems may not be equally effective for different methods. The intent of this paper is to evaluate the appropriateness of different PDS for different trenchless methods. PDS are examined through a structured decision-making process called Fuzzy Delivery System Selection Model (FDSSM). The process of incorporating the impacts of: (a) the characteristics of trenchless projects and (b) owners’ needs in the FDSSM is performed by collecting data using questionnaires deployed to professionals involved in the trenchless industry in order to determine the importance of delivery systems selection attributes for different trenchless methods, and then analyzing this data. The sensitivity of PDS rankings with respect to trenchless methods is considered in order to evaluate whether similar project delivery systems are equally effective in different trenchless methods. The effectiveness of PDS with respect to attributes is defined as follows: a project delivery system is most effective with respect to an attribute (e.g., ability to control growth in costs ) if there is no project delivery system that is more effective than that PDS. The results of this study may assist trenchless project owners to select the appropriate PDS for the trenchless method selected.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Behavioral Finance develop as it is perceived anomalies in these markets efficient. This fields of study can be grouped into three major groups: heuristic bias, tying the shape and inefficient markets. The present study focuses on issues concerning the heuristics of representativeness and anchoring. This study aimed to identify the then under-reaction and over-reaction, as well as the existence of symmetry in the active first and second line of the Brazilian stock market. For this, it will be use the Fuzzy Logic and the indicators that classify groups studied from the Discriminant Analysis. The highest present, indicator in the period studied, was the Liabilities / Equity, demonstrating the importance of the moment to discriminate the assets to be considered "winners" and "losers." Note that in the MLCX biases over-reaction is concentrated in the period of financial crisis, and in the remaining periods of statistically significant biases, are obtained by sub-reactions. The latter would be in times of moderate levels of uncertainty. In the Small Caps the behavioral responses in 2005 and 2007 occur in reverse to those observed in the Mid-Large Cap. Now in times of crisis would have a marked conservatism while near the end of trading on the Bovespa speaker, accompanied by an increase of negotiations, there is an overreaction by investors. The other heuristics in SMLL occurred at the end of the period studied, this being a under-reaction and the other a over-reaction and the second occurring in a period of financial-economic more positive than the first. As regards the under / over-reactivity in both types, there is detected a predominance of either, which probably be different in the context in MLCX without crisis. For the period in which such phenomena occur in a statistically significant to note that, in most cases, such phenomena occur during the periods for MLCX while in SMLL not only biases are less present as there is no concentration of these at any time . Given the above, it is believed that while detecting the presence of bias behavior at certain times, these do not tend to appear to a specific type or heuristics and while there were some indications of a seasonal pattern in Mid- Large Caps, the same behavior does not seem to be repeated in Small Caps. The tests would then suggest that momentary failures in the Efficient Market Hypothesis when tested in semistrong form as stated by Behavioral Finance. This result confirms the theory by stating that not only rationality, but also human irrationality, is limited because it would act rationally in many circumstances

Relevância:

80.00% 80.00%

Publicador:

Resumo:

By proposing a numerical based method on PCA-ANFIS(Adaptive Neuro-Fuzzy Inference System), this paper is focusing on solving the problem of uncertain cycle of water injection in the oilfield. As the dimension of original data is reduced by PCA, ANFIS can be applied for training and testing the new data proposed by this paper. The correctness of PCA-ANFIS models are verified by the injection statistics data collected from 116 wells inside an oilfield, the average absolute error of testing is 1.80 months. With comparison by non-PCA based models which average error is 4.33 months largely ahead of PCA-ANFIS based models, it shows that the testing accuracy has been greatly enhanced by our approach. With the conclusion of the above testing, the PCA-ANFIS method is robust in predicting the effectiveness cycle of water injection which helps oilfield developers to design the water injection scheme.