974 resultados para Formation control
Resumo:
Many tropical tree species produce growth rings in response to seasonal environmental factors that influence the activity of the vascular cambium. We applied the following methods to analyze the annual nature of treering formation of 24 tree species from a seasonal semi-deciduous forest of southeast Brazil: describing wood anatomy and phenology, counting tree rings after cambium markings, and using permanent dendrometer bands. After 7 years of systematic observations and measurements, we found the following: the trees lost their leaves during the dry season and grew new leaves at the end of the same season; trunk increment dynamics corresponded to seasonal changes in precipitation, with higher increment (active period) during the rainy season (October-April) and lower increment (dormant period) during the dry season (May-September); the number of tree rings formed after injuries to the cambium coincided with the number of years since the extraction of the wood samples. As a result of these observations, it was concluded that most study trees formed one growth ring per year. This suggests that tree species from the seasonal semi-deciduous forests of Brazil have an annual cycle of wood formation. Therefore, these trees have potential for use in future studies of tree age and radial growth rates, as well as to infer ecological and regional climatic conditions. These future studies can provide important information for the management and conservation of these endangered forests.
Resumo:
Background & aims: This study was undertaken to assess magnesium intake and magnesium status in patients with type 2 diabetes, and to identify the parameters that best predict alterations in fasting glucose and plasma magnesium. Methods: A cross-sectional study was carried out in patients with type 2 diabetes (n = 51; 53.6 +/- 10.5 y) selected within the inclusion factors, at the University Hospital Onofre Lopes. Magnesium intake was assessed by three 24-h recalls. Urine, plasma and erythrocytes magnesium, fasting and 2-h postprandial glucose, HbA1, microalbuminuria, proteinuria, and serum and urine creatinine were measured. Results: Mean magnesium intake (9.37 +/- 1.76 mmol/d), urine magnesium (2.80 +/- 1.51 mmol/d), plasma magnesium (0.71 +/- 0.08 mmol/L) and erythrocyte magnesium (1.92 +/- 0.23 mmol/L) levels were low. Seventy-seven percent of participants presented one or more magnesium status parameters below the cut-off points of 3.00 mmol/L for urine, 0.75 mmol/L for plasma and 1.65 mmol/L for erythrocytes. Subjects presented poor blood glucose control with fasting glucose of 8.1 +/- 3.7 mmol/L, 2-h postprandial glucose of 11.1 +/- 5.1 mmol/L, and HbA1 of 11.4 +/- 3.0%. The parameters that influenced fasting glucose were urine, plasma and dietary magnesium, while plasma magnesium was influenced by creatinine clearance. Conclusions: Magnesium status was influenced by kidney depuration and was altered in patients with type 2 diabetes, and magnesium showed to play an important role in blood glucose control. (C) 2011 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Resumo:
The natural chlorophyll degradation results in noncolored chlorophyll catabolites (NCCs), but there are controversies if these are the final products. The formation and degradation of NCCs during soybean seed (Glycine max L. Merrill) maturation and two drying temperatures were investigated. Soybean was harvested at six maturation stages. The effect of postharvest drying at 40 and 60 degrees C on the NCC formation was analyzed by high-performance liquid chromatography (HPLC), and results were expressed as areas under the curve. All samples contained fractions with an absorption maximum at 320 nm, typical for NCC. The amounts of NCC increased until 114 days after planting and were significantly lower in advanced maturation stages. These results indicate that the NCC in soybeans might not be the final products of chlorophyll degradation. Their reduction in advanced maturation stages may be due to further metabolization. Heating soybeans at 40 and 60 degrees C promoted unnatural chlorophyll degradation and impaired the formation of NCC.
Resumo:
Microcystins (MC), a family of heptapeptide toxins produced by some genera of Cyanobacteria, have potent hepatotoxicity and tumor-promoting activity. Leukocyte infiltration in the liver was observed in MC-induced acute intoxication. Although the mechanisms of hepatotoxicity are still unclear, neutrophil infiltration in the liver may play an important role in triggering toxic injury and tumor development. The present study reports the effects of MC-LA, MC-YR and MC-LR (1 and 1000 nM) on human and rat neutrophils functions in vitro. Cell viability, DNA fragmentation, mitochondrial membrane depolarization and intracellular reactive oxygen species (ROS) levels were measured by flow cytometry. Extracellular ROS content was measured by lucigenin-amplified chemiluminescence, and cytokines were determined by ELISA. We found that these MC increased interleukin-8 (IL-8), cytokine-induced neutrophil chemoattractant-2 alpha beta (CINC-2 alpha beta) and extracellular ROS levels in human and rat neutrophils. Apart from neutrophil presence during the inflammatory process of MC-induced injury, our results suggest that hepatic neutrophil accumulation is further increased by MC-induced neutrophil-derived chemokine. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
NUNES ALVES, M. J. N., M. R. DOS SANTOS, R. G. DIAS, C. A. AKIHO, M. C. LATERZA, M. U. P. B. RONDON, R. L. DE MORAES MOREAU, and C. E. NEGRAO. Abnormal Neurovascular Control in Anabolic Androgenic Steroids Users. Med. Sci. Sports Exerc., Vol. 42, No. 5, pp. 865-871, 2010. Purpose: Previous studies showed that anabolic androgenic steroids (AAS) increase vascular resistance and blood pressure (BP) in humans. In this study, we tested the hypotheses 1) that AAS users would have increased muscle sympathetic nerve activity (MSNA) and reduced forearm blood flow (FBF) compared with AAS nonusers and 2) that there would be an association between MSNA and 24-h BP. Methods: Twelve AAS users aged 31 +/- 2 yr (means +/- SE) and nine age-matched AAS nonusers aged 29 T 2 yr participated in the study. All individuals were involved in strength training for at least 2 yr. AAS was determined by urine test (chromatography-mass spectrometry). MSNA was directly measured by microneurography technique. FBF was measured by venous occlusion plethysmography. BP monitoring consisted of measures of BP for 24 h. Results: MSNA was significantly higher in AAS users than that in AAS nonusers (29 +/- 3 vs 20 +/- 1 bursts per minute, P = 0.01). FBF (1.92 +/- 0.17 vs 2.77 +/- 0.24 mL.min(-1).100 mL(-1), P = 0.01) and forearm vascular conductance (2.01 +/- 0.17 vs 2.86 +/- 0.31 U, P = 0.02) were significantly lower in AAS users than that in AAS nonusers. Systolic (131 +/- 4 vs 120 +/- 3 mm Hg, P = 0.001), diastolic (74 +/- 4 vs 68 +/- 3 mm Hg, P = 0.02), and mean BP (93 +/- 4 vs 86 +/- 3 mm Hg, P = 0.005) and heart rate (74 +/- 3 vs 68 +/- 3 bpm, P = 0.02) were significantly higher in AAS users when compared with AAS nonusers. Further analysis showed that there was a significant correlation between MSNA and 24-h mean BP (r = 0.75, P = 0.002). Conclusions: AAS increases MSNA and reduces muscle blood flow in young individuals. In addition, the increase in BP levels in AAS users is associated with augmented sympathetic outflow. These findings suggest that AAS increases the susceptibility for cardiovascular disease in humans.
Resumo:
Background: There is increasing interest in natural treatments to control dyslipidemia and reduce the risk of cardiovascular disease. Previous studies have demonstrated the beneficial effects of soy yogurt fermented with Enterococcus faecium CRL 183 and of dietary isoflavones on the lipid profile. The purpose of the present study was to investigate the effects of isoflavone-supplemented soy yogurt, fermented with E. faecium CRL183, on lipid parameters and atherosclerosis development in rabbits with induced hypercholesterolemia. Methods: Forty-eight rabbits were randomly assigned to eight groups fed on the following diets for 60 days: C - control; IY - isoflavone-supplemented soy yogurt; H - hypercholesterolemic (1.0% cholesterol wt/wt diet); HY - hypercholesterolemic plus soy yogurt; HIY - hypercholesterolemic plus isoflavone-supplemented soy yogurt; HP - hypercholesterolemic plus placebo; HI hypercholesterolemic plus isoflavone and HE - hypercholesterolemic plus pure culture of E. faecium CRL 183. Serum lipids and autoantibodies against oxLDL (oxLDL Ab) were analyzed on days 0, 30 and 60 of the treatment and the atherosclerotic lesions were quantified at the end of the experiment. Results: Soy yogurt, soy yogurt supplemented with isoflavones and placebo promoted significant reductions in total cholesterol level (38.1%, 27.0% and 26.6%, respectively). Significant increases in serum HDL-C concentration relative to group H were detected in animals that ingested soy yogurt, with or without the isoflavone supplement (55.2%), E. faecium culture (43.3%) or placebo (35.8%). Intake of soy yogurt and soy yogurt supplemented with isoflavones prevented the rise of oxLDL Ab during the study period. The extent of atherosclerosis in the thoracic and abdominal aortas was reduced in the HIY, HY and HP groups. However, when the whole aorta was analyzed, animals treated with soy yogurt supplemented with isoflavones exhibited the greatest reduction (51.4%, P < 0.05) in atherosclerotic lesion area, compared to group H. Conclusion: Soy yogurt could be consumed as an alternative means of reducing the risk of cardiovascular disease by improving the lipid profile and inhibiting oxLDL Ab formation. Our findings also suggest that isoflavone supplementation may enhance the antiatherosclerotic effect of soy yogurt.
Resumo:
Background: Restriction fragment length polymorphism (RFLP) is a common molecular assay used for genotyping, and it requires validated quality control procedures to prevent mistyping caused by impaired endonuclease activity. We have evaluated the usefulness of a plasmid-based internal control in RFLP assays. Results: Blood samples were collected from 102 individuals with acute myocardial infarction (AMI) and 108 non-AMI individuals (controls) for DNA extraction and laboratory analyses. The 1196C> T polymorphism in the toll-like receptor 4 (TLR4) gene was amplified by mismatched-polymerase chain reaction (PCR). Amplicons and pBluescript II SK-plasmid were simultaneously digested with endonuclease HincII. Fragments were separated on 2% agarose gels. Plasmid was completely digested using up to 55.2 nmL/L DNA solutions and 1 mu L PCR product. Nevertheless, plasmid DNA with 41.4 nM or higher concentrations was incompletely digested in the presence of 7 mL PCR product. In standardized conditions, TLR4 1196C> T variant was accurately genotyped. TLR4 1196T allele frequency was similar between AMI (3.1%) and controls (2.0%, p = 0.948). TLR4 SNP was not associated with AMI in this sample population. In conclusion, the plasmid-based control is a useful approach to prevent mistyping in RFLP assays, and it is validate for genetic association studies such as TLR4 1196C> T.
Resumo:
The Kluyveromyces marxianus strains CBS 6556, CBS 397 and CBS 712(T) were cultivated on a defined medium with either glucose, lactose or sucrose as the sole carbon source, at 30 and 37A degrees C. The aim of this work was to evaluate the diversity within this species, in terms of the macroscopic physiology. The main properties evaluated were: intensity of the Crabtree effect, specific growth rate, biomass yield on substrate, metabolite excretion and protein secretion capacity, inferred by measuring extracellular inulinase activity. The strain Kluyveromyces lactis CBS 2359 was evaluated in parallel, since it is the best described Kluyveromyces yeast and thus can be used as a control for the experimental setup. K. marxianus CBS 6556 presented the highest specific growth rate (0.70 h(-1)) and the highest specific inulinase activity (1.65 U mg(-1) dry cell weight) among all strains investigated, when grown at 37A degrees C with sucrose as the sole carbon source. The lowest metabolite formation and highest biomass yield on substrate (0.59 g dry cell weight g sucrose(-1)) was achieved by K. marxianus CBS 712(T) at 37A degrees C. Taken together, the results show a systematic comparison of carbon and energy metabolism among three of the best known K. marxianus strains, in parallel to K. lactis CBS 2359.
Resumo:
Previous work demonstrated that a mixture of NH(4)Cl and KNO(3) as nitrogen source was beneficial to fed-batch Arthrospira (Spirulina) platensis cultivation, in terms of either lower costs or higher cell concentration. On the basis of those results, this study focused on the use of a cheaper nitrogen source mixture, namely (NH(4))(2)SO(4) plus NaNO(3), varying the ammonium feeding time (T = 7-15 days), either controlling the pH by CO(2) addition or not. A. platensis was cultivated in mini-tanks at 30 degrees C, 156 mu mol photons m(-2) s(-1), and starting cell concentration of 400 mg L(-1), on a modified Schlosser medium. T = 13 days under pH control were selected as optimum conditions, ensuring the best results in terms of biomass production (maximum cell concentration of 2911 mg L(-1), cell productivity of 179 mg L(-1) d(-1) and specific growth rate of 0.77 d(-1)) and satisfactory protein and lipid contents (around 30% each). (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Ethylene oxide (EO) is used to sterilize Oxygenator and Tubing applied to heart surgery. Residual levels of EO and its derivatives, ethylene chlorohydrin (ECH) and ethylene glycol (EG), may be hazardous to the patients. Therefore, it must be removed by the aeration process. This study aimed to estimate the minimum aeration time for these devices to attain safe limits for use (avoiding excessive aeration time) and to evaluate the Green Fluorescent Protein (GFP) as a biosensor capable of best indicating the distribution and penetration of EO gas throughout the sterilization chamber. Sterilization cycles of 2, 4, and 8 h were monitored by Bacillus atrophaeus ATCC 9372 as a biological indicator (131) and by the GFP. Residual levels of EO, ECH, and EG were determined by gas chromatography (GC), and the residual dissipation was studied. Safe limits were reached right after the sterilization process for Oxygenator and after 204 h of aeration for Tubing. In the 2 h cycle, the GFP concentration decreased from 4.8 (+/- 3.2)% to 7.5 (+/- 2.5)%. For the 4 h cycle, the GFP concentration decreased from 17.4 (+/- 3.0)% to 21.5 (+/- 6.8)%, and in the 8 h cycle, it decreased from 22.5 (+/- 3.2)% to 23.9 (+/- 3.9)%. This finding showed the potentiality for GFP applications as an EO biosensor. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 9113: 626-630, 2009
Resumo:
Clavulanic acid (CA) is a potent inhibitor of beta-lactamases, produced by some resistant pathogenic microorganisms, which allows efficient treatment of infectious diseases. The kinetic and thermodynamic parameters of CA production by a new isolate of Streptomyces DAUFPE 3060 and its degradation were evaluated. The effect of temperature on the system was investigated in the range 24-40 degrees C adopting an overall model accounting for (a) the Arrhenius-type formation of CA by fermentation, (b) the hypothetical reversible unfolding of the enzyme limiting the overall metabolism, and (c) the irreversible first-order degradation of CA. The higher rates of CA formation (k(CA) = 0,107 h(-1)) and degradation (k(d) = 0.062 h(-1)) were observed at 32 and 40 degrees C, respectively. The main thermodynamic parameters of the three above hypothesized events were estimated. In particular, the activation parameters of degradation (activation energy = 39.0 kJ/mol; Delta H(d)* = 36.5 kJ/mol; Delta S(d)* = -219.7 J/(mol K); Delta G(d)* = 103.5 kJ/mol) compare reasonably well with those reported in the literature for similar system without taking into account the other two events. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
A method was optimized for the analysis of omeprazole (OMZ) by ultra-high speed LC with diode array detection using a monolithic Chromolith Fast Gradient RP 18 endcapped column (50 x 2.0 mm id). The analyses were performed at 30 degrees C using a mobile phase consisting of 0.15% (v/v) trifluoroacetic acid (TFA) in water (solvent A) and 0.15% (v/v) TFA in acetonitrile (solvent B) under a linear gradient of 5 to 90% B in 1 min at a flow rate of 1.0 mL/min and detection at 220 nm. Under these conditions, OMZ retention time was approximately 0.74 min. Validation parameters, such as selectivity, linearity, precision, accuracy, and robustness, showed results within the acceptable criteria. The method developed was successfully applied to OMZ enteric-coated pellets, showing that this assay can be used in the pharmaceutical industry for routine QC analysis. Moreover, the analytical conditions established allow for the simultaneous analysis of OMZ metabolites, 5-hydroxyomeprazole and omeprazole sulfone, in the same run, showing that this method can be extended to other matrixes with adequate procedures for sample preparation.
Resumo:
Objectives In the present study we investigated the anti nociceptive, anti-inflammatory and antipyretic effects of 7-hydroxycoumarin (7-HC) in animal models. Methods The effects of oral 7-HC were tested against acetic acid-induced writhing, formalin test, tail flick test, complete Freund`s adjuvant (CFA)-induced hypemociception, carrageenan-induced paw oedema, lipopolysaccharide-induced fever and the rota rod test. Key findings 7-HC (3-60 mg/kg) produced a dose-related antinociception against acetic acid-induced writhing in mice and in the formalin test. In contrast, treatment with 7-HC did not prevent thermal nociception in the tail flick test. A single treatment with 7-HC, 60 mg/kg, produced a long-lasting antinociceptive effect against CFA-induced hypernociception, a chronic inflammatory pain stimulus. Notably, at 60 mg/kg per day over 4 days the administration of 7-HC produced a continuous antinociceptive effect against CFA-induced hypernociception. 7-HC (30-120 mg/kg) produced anti-inflammatory and antipyretic effects against carrageenan-induced inflammation and lipopolysaccharide-induced fever, respectively. Moreover, 7-HC was found to be safe with respect to ulcer induction. In the rota rod test, 7-HC-treated mice did not show any motor performance alterations. Conclusions The prolonged antinociceptive and anti-inflammatory effects of 7-HC, in association with its low ulcerogenic activity, indicate that this molecule might be a good candidate for development of new drugs for the control of chronic inflammatory pain and fever.
Resumo:
Formation of a normal (not temporary) W/O/W multiple emulsion via the one-step method as a result of the simultaneous occurrence of catastrophic and transitional phase inversion processes has been recently reported. Critical features of this process include the emulsification temperature (corresponding to the ultralow surface tension point), the use of a specific nonionic surfactant blend and the surfactant blend/oil phase ratio, and the addition of the surfactant blend to the oil phase. The purpose of this study was to investigate physicochemical properties in an effort to gain a mechanistic understanding of the formation of these emulsions. Bulk, surface, and interfacial theological properties of adsorbed nonionic surfactant (CremophorRH40 and Span80) films were investigated under conditions known to affect W/O/W emulsion formation. Bulk viscosity results demonstrated that CremophorRH40 has a higher mobility in oil compared than in water, explaining the significance of the solvent phase. In addition, the bulk viscosity profile of aqueous solutions containing CremophorRH40 indicated a phase transition at around 78 +/- 2 degrees C, which is in agreement with cubic phase formation in the Winsor III region. The similarity in the interfacial elasticity values of CremophorRH40 and Span80 indicated that canola oil has a major effect on surface activity, showing the significance of vegetable oil. The highest interfacial shear elasticity and viscosity were observed when both surfactants were added to the oil phase, indicating the importance of the microstructural arrangement. CremophorRH40/Span80 complexes tended to desorb from the solution/solution interface with increasing temperature, indicating surfactant phase formation as is theoretically predicted in the Winsor III region. Together these interfacial and bulk rheology data demonstrate that one-step W/O/W emulsions form as a result of the simultaneous occurrence of phase-transition processes in the Winsor III region and explain the critical formulation and processing parameters necessary to achieve the formation of these normal W/O/W emulsions.