967 resultados para Experimental Activity
Resumo:
Background: Antineoplastic phospholipids (ALPs) represent a promising class of drugs with a novel mode of action undergoes rapid turnover in the cell membrane of tumors, interfering with lipid signal transduction, inducing cell death. The aim of this study was to investigate the synthetic phosphoethanolamine (Pho-s) as a new anticancer agent. Materials and Methods: Cell viability and morphology were assessed by (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Hoechst and rhodamine staining. Apoptosis was assessed by Annexin V and propidium iodide (PI) staining, caspase-3 activity, mitochondrial membrane potential (Delta m psi) and cell cycle analysis, combined with evaluation of tumor growth in Ehrlich Ascites Tumor (EAT) bearing mice. Results: We found that Pho-s 2.30 mg/ml induced cytotoxicity in all tumor cell lines studied without affecting normal cells. In vitro studies with EAT cells indicated that Pho-s induced apoptosis, demonstrated by an increase in Annexin-V positive cells, loss of mitochondrial potential (Delta m psi) and increased caspase-3 activity. It was also shown to increase the sub-G(1) apoptotic fraction and inhibit progression to the S phase of the cell cycle. Additionally, antitumor effects on the EAT-bearing mice showed that Pho-s, at a concentration of 35 and 70 mg/kg, inhibited tumor growth and increased the lifespan of animals without causing liver toxicity. Conclusion: These findings suggest that Pho-s is a potential anticancer candidate drug.
Resumo:
Leishmaniasis and Chagas disease are parasitic protozoan infections that affect the poorest population in the world, causing high mortality and morbidity. As a result of highly toxic and long-duration treatments, novel, safe and more efficacious drugs are essential. In this work, the methanol (MeOH) extract from the leaves of Piper malacophyllum (Piperaceae) was fractioned to afford one alkenylphenol, which was characterized as 4-[(3'E)-decenyl]phenol (gibbilimbol B) by spectroscopic methods. Anti-protozoan in vitro assays demonstrated for the first time that Leishmania (L.) infantum chagasi was susceptible to gibbilimbol B. with an in vitro EC50 of 23 mu g/mL against axenic promastigotes and an EC50 of 22 mu g/mL against intracellular amastigotes. Gibbilimbol B was also tested for anti-trypanosomal activity (Trypanosoma cruzi) and showed an EC50 value of 17 mu g/mL against trypomastigotes. To evaluate the cytotoxic parameters, this alkenylphenol was tested in vitro against NCTC cells, showing a CC50 of 59 mu g/mL and absent hemolytic activity at the highest concentration of 75 mu g/mL. Using the fluorescent probe SYTOX Green suggested that the alkenylphenol disrupted the Leishmania plasma membrane upon initial incubation. Further drug design studies aiming at derivatives could be a promising tool for the development of new therapeutic agents for leishmaniasis and Chagas disease. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Background: Antimicrobial peptides are present in animals, plants and microorganisms and play a fundamental role in the innate immune response. Gomesin is a cationic antimicrobial peptide purified from haemocytes of the spider Acanthoscurria gomesiana. It has a broad-spectrum of activity against bacteria, fungi, protozoa and tumour cells. Candida albicans is a commensal yeast that is part of the human microbiota. However, in immunocompromised patients, this fungus may cause skin, mucosal or systemic infections. The typical treatment for this mycosis comprises three major categories of antifungal drugs: polyenes, azoles and echinocandins; however cases of resistance to these drugs are frequently reported. With the emergence of microorganisms that are resistant to conventional antibiotics, the development of alternative treatments for candidiasis is important. In this study, we evaluate the efficacy of gomesin treatment on disseminated and vaginal candidiasis as well as its toxicity and biodistribution. Results: Treatment with gomesin effectively reduced Candida albicans in the kidneys, spleen, liver and vagina of infected mice. The biodistribution of gomesin labelled with technetium-99 m showed that the peptide is captured in the kidneys, spleen and liver. Enhanced production of TNF-alpha, IFN-gamma and IL-6 was detected in infected mice treated with gomesin, suggesting an immunomodulatory activity. Moreover, immunosuppressed and C. albicans-infected mice showed an increase in survival after treatment with gomesin and fluconazole. Systemic administration of gomesin was also not toxic to the mice Conclusions: Gomesin proved to be effective against experimental Candida albicans infection. It can be used as an alternative therapy for candidiasis, either alone or in combination with fluconazole. Gomesin's mechanism is not fully understood, but we hypothesise that the peptide acts through the permeabilisation of the yeast membrane leading to death and/or releasing the yeast antigens that trigger the host immune response against infection. Therefore, data presented in this study reinforces the potential of gomesin as a therapeutic antifungal agent in both humans and animals.
Resumo:
Arthritis of the knee is the most common type of joint inflammatory disorder and it is associated with pain and inflammation of the joint capsule. Few studies address the effects of the 810-nm laser in such conditions. Here we investigated the effects of low-level laser therapy (LLLT; infrared, 810-nm) in experimentally induced rat knee inflammation. Thirty male Wistar rats (230-250 g) were anesthetized and injected with carrageenan by an intra-articular route. After 6 and 12 h, all animals were killed by CO(2) inhalation and the articular cavity was washed for cellular and biochemical analysis. Articular tissue was carefully removed for real-time PCR analysis in order to evaluate COX-1 and COX-2 expression. LLLT was able to significantly inhibit the total number of leukocytes, as well as the myeloperoxidase activity with 1, 3, and 6 J (Joules) of energy. This result was corroborated by cell counting showing the reduction of polymorphonuclear cells at the inflammatory site. Vascular extravasation was significantly inhibited at the higher dose of energy of 10 J. Both COX-1 and 2 gene expression were significantly enhanced by laser irradiation while PGE(2) production was inhibited. Low-level laser therapy operating at 810 nm markedly reduced inflammatory signs of inflammation but increased COX-1 and 2 gene expression. Further studies are necessary to investigate the possible production of antiinflammatory mediators by COX enzymes induced by laser irradiation in knee inflammation.
Resumo:
A growing body of evidence demonstrates a correlation between Th2 cytokines and the development of focal and segmental glomerulosclerosis ( FSGS). Therefore, we hypothesized that GSL-1, a monoglycosylceramide from Sphingomonas ssp. with pro-Th1 activity on invariant Natural Killer T ( iNKT) lymphocytes, could counterbalance the Th2 profile and modulate glomerulosclerosis. Using an adriamycin( ADM)-based model of FSGS, we found that BALB/c mice presented albuminuria and glomerular degeneration in association with a Th2-like pro-fibrogenic profile; these mice also expressed a combination of inflammatory cytokines, such as IL-4, IL-1 alpha, IL-1 beta, IL-17, TNF-alpha, and chemokines, such as RANTES and eotaxin. In addition, we observed a decrease in the mRNA levels of GD3 synthase, the enzyme responsible for GD3 metabolism, a glycolipid associated with podocyte physiology. GSL-1 treatment inhibited ADM-induced renal dysfunction and preserved kidney architecture, a phenomenon associated with the induction of a Th1-like response, increased levels of GD3 synthase transcripts and inhibition of pro-fibrotic transcripts and inflammatory cytokines. TGF-beta analysis revealed increased levels of circulating protein and tissue transcripts in both ADM- and GSL-1-treated mice, suggesting that TGF-beta could be associated with both FSGS pathology and iNKT-mediated immunosuppression; therefore, we analyzed the kidney expression of phosphorylated SMAD2/3 and SMAD7 proteins, molecules associated with the deleterious and protective effects of TGF-beta, respectively. We found high levels of phosphoSMAD2/3 in ADM mice in contrast to the GSL-1 treated group in which SMAD7 expression increased. These data suggest that GSL-1 treatment modulates the downstream signaling of TGF-beta through a renoprotective pathway. Finally, GSL-1 treatment at day 4, a period when proteinuria was already established, was still able to improve renal function, preserve renal structure and inhibit fibrogenic transcripts. In conclusion, our work demonstrates that the iNKT agonist GSL-1 modulates the pathogenesis of ADM-induced glomerulosclerosis and may provide an alternative approach to disease management.
Resumo:
Hev b 13 is an allergenic esterase obtained from the rubber tree Hevea brasiliensis, which has been shown recently to induce human mononuclear cells to release interleukin (IL)-10 in vitro. This immunoregulatory cytokine appears to play an important role in preventing inflammation and mucosal damage in animal models of colitis and in Crohn's disease patients. The aim of this study was to evaluate the therapeutic effect of Hev b 13 in mice with 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced colitis. Two hours following colonic instillation of the haptenizing agent, and daily thereafter for 5 days, Hev b 13 was administered by oral gavage. In mice treated with daily doses of either 0.5 mg/kg or 5.0 mg/kg of Hev b 13, the clinical signs of diarrhoea, rectal prolapse and body weight loss and also histological damage of the distal colon, were reduced significantly, in comparison with water-treated diseased mice. These findings suggest a potent anti-inflammatory activity of Hev b 13; this activity is speculated to be related to its interaction with cells from the immune system.
Resumo:
Hev b 13 is an allergenic esterase obtained from the rubber tree Hevea brasiliensis, which has been shown recently to induce human monocytes to release interleukin (IL)-10 in vitro, and to exert a potent anti-inflammatory effect in vivo. Moreover, Hev b 13 has been shown to reduce clinical signs of inflammation and also histological damage to the distal colon of mice with 2,4,6-trinitrobenze sulphonic acid (TNBS)-induced colitis after its oral administration. The aim of this study was to investigate the effect of Hev b 13 on human mononuclear cells, as well as its therapeutic use in the methylated bovine serum albumin (mBSA) model of antigen-induced arthritis. Five days before the intra-articular challenge, and daily thereafter for 8 days, Hev b 13 was administered by oral gavage. In mice treated with a dose of 0.5 mg/kg of Hev b 13, the severity of oedema, leucocyte infiltration, pannus formation and cartilage erosion were reduced significantly. These findings underscore the anti-inflammatory activity suggested previously for Hev b 13, an activity speculated to be related to its interaction with monocytes/macrophages and the consequent stimulation of IL-10 release and reduction of tumour necrosis factor (TNF) release. The study also opens a wide range of possible applications in the field of immune-mediated inflammatory diseases.
Resumo:
Background: The hallmark of Chagas disease (CD) is multifocal myocarditis and extensive fibrosis. We investigated the potential effect of colchicine on myocardial remodeling in experimental CD. Methods and Results: One hundred Syrian hamsters were randomly divided into noninfected untreated control (CG), noninfected control treated with colchicine (COLG 0.4 mg kg(-1) d(-1) by gavage), infected (IG), and infected treated with colchicine (ICOLG, 0.4 mg kg(-1) d(-1)) groups. The interstitial collagen volume fraction (ICVF) was evaluated by videomorphometry with picrosirius red staining. The gelatinolytic activities of matrix metalloproteinase (MMP) 2 were examined with the use of zymography. Myocarditis was described according to the Dallas criteria. Statistical comparisons were performed with parametric analysis of variance and Tukey test. ICVF (%) accumulation was attenuated in infected colchicine-treated animals in the left (CG 0.81 +/- 0.13, COLG 0.85 +/- 0.13, IG: 1.35 +/- 0.31,* ICOLG 1.06 +/- 0.19; *P < .05 compared with ICOLG) and right ventricles (CG 1.4 +/- 0.36, COLG 1.26 +/- 0.14, IG 1.97 +/- 0.058,* ICOLG: 1.52 +/- 0.23; *P < .05 compared with ICOLG). A significant increase in MMP-2 enzymatic activity (UA) was observed in ICOLG (17,432.8*) compared with GC (3731.6), COLG (2,792.6), and IG (4,286.3; *P < .001). In IG, 66% of animals had myocarditis compared with only 49% in ICOLG. Conclusions: Colchicine had a protective effect on myocardium, indicated by decreased interstitial myocardial fibrosis, increased intensity of MMP-2, and attenuated myocardial inflammation. (J Cardiac Fail 2012;18:654-659)
Resumo:
Schistosomiasis is one of the most important parasitic infections in humans that occur in many tropical and subtropical countries. Currently, the control of schistosomiasis rests with a single drug, praziquantel, which is effective against adult worms but not the larval stages. Recent studies have shown that piplartine, an amide isolated from plants of the genus Piper (Piperaceae), reveals interesting antischistosomal properties against Schistosoma mansoni adult worms. Here, we report the in vitro antischistosomal activity of piplartine on S. mansoni schistosomula of different ages (3 h old and 1, 3, 5, and 7 days old), and examine alterations on the tegumental surface of worms by means of confocal laser scanning microscopy. Piplartine at a concentration of 7.5 mu M caused the death of all schistosomula within 120 h. The lethal effect occurred in a dose-dependent manner and was also dependent on the age of the parasite. Microscopy observation revealed extensive tegumental destruction, including blebbing, granularity, and a shorter body length. This report provides the first evidence that piplartine is able to kill schistosomula of different ages and reinforce that piplartine is a promising compound that could be used for the development of new schistosomicidal agent. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Aldolase has emerged as a promising molecular target for the treatment of human African trypanosomiasis. Over the last years, due to the increasing number of patients infected with Trypanosoma brucei, there is an urgent need for new drugs to treat this neglected disease. In the present study, two-dimensional fragment-based quantitative-structure activity relationship (QSAR) models were generated for a series of inhibitors of aldolase. Through the application of leave-one-out and leave-many-out cross-validation procedures, significant correlation coefficients were obtained (r(2) = 0.98 and q(2) = 0.77) as an indication of the statistical internal and external consistency of the models. The best model was employed to predict pK(i) values for a series of test set compounds, and the predicted values were in good agreement with the experimental results, showing the power of the model for untested compounds. Moreover, structure-based molecular modeling studies were performed to investigate the binding mode of the inhibitors in the active site of the parasitic target enzyme. The structural and QSAR results provided useful molecular information for the design of new aldolase inhibitors within this structural class.
Resumo:
The lateral septal area (LSA) is a limbic structure involved in autonomic, neuroendocrine and behavioural responses. An inhibitory influence of the LSA on baroreflex activity has been reported; however, the local neurotransmitter involved in this modulation is still unclear. In the present study, we verified the involvement of local LSA adrenoceptors in modulating cardiac baroreflex activity in unanaesthetized rats. Bilateral microinjection of the selective a1-adrenoceptor antagonist WB4101 (10 nmol in a volume of 100 nl) into the LSA decreased baroreflex bradycardia evoked by blood pressure increases, but had no effect on reflex tachycardia evoked by blood pressure decreases. Nevertheless, bilateral administration of the selective a2-adrenoceptor antagonist RX821002 (10 nmol in 100 nl) increased baroreflex tachycardia without affecting reflex bradycardia. Treatment of the LSA with a cocktail containing WB4101 and RX821002 decreased baroreflex bradycardia and increased reflex tachycardia. The non-selective beta-adrenoceptor antagonist propranolol (10 nmol in 100 nl) did not affect either reflex bradycardia or tachycardia. Microinjection of noradrenaline into the LSA increased reflex bradycardia and decreased the baroreflex tachycardic response, an opposite effect compared with those observed after double blockade of a1- and a2-adrenoceptors, and this effect of noradrenaline was blocked by local LSA pretreatment with the cocktail containing WB4101 and RX821002. The present results provide advances in our understanding of the baroreflex neural circuitry. Taken together, data suggest that local LSA a1- and a2-adrenoceptors modulate baroreflex control of heart rate differently. Data indicate that LSA a1-adrenoceptors exert a facilitatory modulation on baroreflex bradycardia, whereas local a2-adrenoceptors exert an inhibitory modulation on reflex tachycardia.
Resumo:
The pathogenesis of focal segmental glomerulosclerosis (FSGS) appears to be associated with type-2 cytokines and podocyte dysfunction. In this study, we tested the hypothesis that immunization with the polysaccharide fraction of Propionibacterium acnes (PS), a pro-Th1 agonist, may subvert the type-2 profile and protect podocytes from adriamycin-induced glomerulosclerosis. Adriamycin injection resulted in albuminuria and increased serum creatinine in association with loss of glomerular podocin and podoplanin expression, which is consistent with podocyte dysfunction. Renal tissue analysis revealed the expression of transcripts for GATA3 and fibrogenic-related proteins, such as TGF-beta, tissue inhibitor of metalloproteinase-1 (TIMP-1) and metalloproteinase 9 (MMP9). In association with the expression of fibrogenic transcripts, we observed peri-glomerular expression of a-smooth muscle actin (alpha-SMA), indicating epithelial-to-mesenchymal transition, and increased expression of proliferating cell nuclear antigen (PCNA) in tubular cells, suggesting intense proliferative activity. Previous immunization with PS inhibited albuminuria and serum creatinine in association with the preservation of podocyte proteins and inhibition of fibrogenic transcripts and the expression of alpha-SMA and PCNA proteins. Tissue analysis also revealed that PS treatment induced expression of mRNA for GD3 synthase, which is a glycosiltransferase related to the synthesis of GD3, a ganglioside associated with podocyte physiology. In addition, PS treatment inhibited the influx of inflammatory CD8(pos) and CD11b(pos) cells to kidney tissue. Finally, PS treatment on day 4 post-ADM, a period when proteinuria was already established, was able to improve renal function. Thus, we demonstrate that the PS fraction of P. acnes can inhibit FSGS pathogenesis, suggesting that immunomodulation can represent an alternative approach for disease management. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
Background: Myocardium damage during Chagas' disease results from the immunological imbalance between pro-and production of anti-inflammatory cytokines and has been explained based on the Th1-Th2 dichotomy and regulatory T cell activity. Recently, we demonstrated that IL-17 produced during experimental T. cruzi infection regulates Th1 cells differentiation and parasite induced myocarditis. Here, we investigated the role of IL-17 and regulatory T cell during human Chagas' disease. Methodology/Principal Findings: First, we observed CD4(+)IL-17(+) T cells in culture of peripheral blood mononuclear cells (PBMC) from Chagas' disease patients and we evaluated Th1, Th2, Th17 cytokine profile production in the PBMC cells from Chagas' disease patients (cardiomyopathy-free, and with mild, moderate or severe cardiomyopathy) cultured with T. cruzi antigen. Cultures of PBMC from patients with moderate and severe cardiomyopathy produced high levels of TNF-alpha, IFN-gamma and low levels of IL-10, when compared to mild cardiomyopathy or cardiomyopathy-free patients. Flow cytometry analysis showed higher CD4(+)IL-17(+) cells in PBMC cultured from patients without or with mild cardiomyopathy, in comparison to patients with moderate or severe cardiomyopathy. We then analyzed the presence and function of regulatory T cells in all patients. All groups of Chagas' disease patients presented the same frequency of CD4(+)CD25(+) regulatory T cells. However, CD4(+)CD25(+) T cells from patients with mild cardiomyopathy or cardiomyopathy-free showed higher suppressive activity than those with moderate and severe cardiomyopathy. IFN-gamma levels during chronic Chagas' disease are inversely correlated to the LVEF (P = 0.007, r = -0.614), while regulatory T cell activity is directly correlated with LVEF (P = 0.022, r = 0.500). Conclusion/Significance: These results indicate that reduced production of the cytokines IL-10 and IL-17 in association with high levels of IFN-gamma and TNF-alpha is correlated with the severity of the Chagas' disease cardiomyopathy, and the immunological imbalance observed may be causally related with deficient suppressor activity of regulatory T cells that controls myocardial inflammation.
Resumo:
Abstract Background Particulate systems are well known to be able to deliver drugs with high efficiency and fewer adverse side effects, possibly by endocytosis of the drug carriers. On the other hand, cationic compounds and assemblies exhibit a general antimicrobial action. In this work, cationic nanoparticles built from drug, cationic lipid and polyelectrolytes are shown to be excellent and active carriers of amphotericin B against C. albicans. Results Assemblies of amphotericin B and cationic lipid at extreme drug to lipid molar ratios were wrapped by polyelectrolytes forming cationic nanoparticles of high colloid stability and fungicidal activity against Candida albicans. Experimental strategy involved dynamic light scattering for particle sizing, zeta-potential analysis, colloid stability, determination of AmB aggregation state by optical spectra and determination of activity against Candida albicans in vitro from cfu countings. Conclusion Novel and effective cationic particles delivered amphotericin B to C. albicans in vitro with optimal efficiency seldom achieved from drug, cationic lipid or cationic polyelectrolyte in separate. The multiple assembly of antibiotic, cationic lipid and cationic polyelctrolyte, consecutively nanostructured in each particle produced a strategical and effective attack against the fungus cells.
Resumo:
Abstract Introduction Several studies link hematological dysfunction to severity of sepsis. Previously we showed that platelet-derived microparticles from septic patients induce vascular cell apoptosis through the NADPH oxidase-dependent release of superoxide. We sought to further characterize the microparticle-dependent vascular injury pathway. Methods During septic shock there is increased generation of thrombin, TNF-α and nitric oxide (NO). Human platelets were exposed for 1 hour to the NO donor diethylamine-NONOate (0.5 μM), lipopolysaccharide (LPS; 100 ng/ml), TNF-α (40 ng/ml), or thrombin (5 IU/ml). Microparticles were recovered through filtration and ultracentrifugation and analyzed by electron microscopy, flow cytometry or Western blotting for protein identification. Redox activity was characterized by lucigenin (5 μM) or coelenterazine (5 μM) luminescence and by 4,5-diaminofluorescein (10 mM) and 2',7'-dichlorofluorescein (10 mM) fluorescence. Endothelial cell apoptosis was detected by phosphatidylserine exposure and by measurement of caspase-3 activity with an enzyme-linked immunoassay. Results Size, morphology, high exposure of the tetraspanins CD9, CD63, and CD81, together with low phosphatidylserine, showed that platelets exposed to NONOate and LPS, but not to TNF-α or thrombin, generate microparticles similar to those recovered from septic patients, and characterize them as exosomes. Luminescence and fluorescence studies, and the use of specific inhibitors, revealed concomitant superoxide and NO generation. Western blots showed the presence of NO synthase II (but not isoforms I or III) and of the NADPH oxidase subunits p22phox, protein disulfide isomerase and Nox. Endothelial cells exposed to the exosomes underwent apoptosis and caspase-3 activation, which were inhibited by NO synthase inhibitors or by a superoxide dismutase mimetic and totally blocked by urate (1 mM), suggesting a role for the peroxynitrite radical. None of these redox properties and proapoptotic effects was evident in microparticles recovered from platelets exposed to thrombin or TNF-α. Conclusion We showed that, in sepsis, NO and bacterial elements are responsible for type-specific platelet-derived exosome generation. Those exosomes have an active role in vascular signaling as redox-active particles that can induce endothelial cell caspase-3 activation and apoptosis by generating superoxide, NO and peroxynitrite. Thus, exosomes must be considered for further developments in understanding and treating vascular dysfunction in sepsis.