963 resultados para Engineering, Industrial|Engineering, System Science|Operations Research
Resumo:
Automated airborne collision-detection systems are a key enabling technology for facilitat- ing the integration of unmanned aerial vehicles (UAVs) into the national airspace. These safety-critical systems must be sensitive enough to provide timely warnings of genuine air- borne collision threats, but not so sensitive as to cause excessive false-alarms. Hence, an accurate characterisation of detection and false alarm sensitivity is essential for understand- ing performance trade-offs, and system designers can exploit this characterisation to help achieve a desired balance in system performance. In this paper we experimentally evaluate a sky-region, image based, aircraft collision detection system that is based on morphologi- cal and temporal processing techniques. (Note that the examined detection approaches are not suitable for the detection of potential collision threats against a ground clutter back- ground). A novel collection methodology for collecting realistic airborne collision-course target footage in both head-on and tail-chase engagement geometries is described. Under (hazy) blue sky conditions, our proposed system achieved detection ranges greater than 1540m in 3 flight test cases with no false alarm events in 14.14 hours of non-target data (under cloudy conditions, the system achieved detection ranges greater than 1170m in 4 flight test cases with no false alarm events in 6.63 hours of non-target data). Importantly, this paper is the first documented presentation of detection range versus false alarm curves generated from airborne target and non-target image data.
Resumo:
In this paper, we present the outcomes of a project on the exploration of the use of Field Programmable Gate Arrays (FPGAs) as co-processors for scientific computation. We designed a custom circuit for the pipelined solving of multiple tri-diagonal linear systems. The design is well suited for applications that require many independent tri-diagonal system solves, such as finite difference methods for solving PDEs or applications utilising cubic spline interpolation. The selected solver algorithm was the Tri-Diagonal Matrix Algorithm (TDMA or Thomas Algorithm). Our solver supports user specified precision thought the use of a custom floating point VHDL library supporting addition, subtraction, multiplication and division. The variable precision TDMA solver was tested for correctness in simulation mode. The TDMA pipeline was tested successfully in hardware using a simplified solver model. The details of implementation, the limitations, and future work are also discussed.
Resumo:
BACKGROUND Collaborative and active learning have been clearly identified as ways students can engage in learning with each other and the academic staff. Traditional tier based lecture theatres and the didactic style they engender are not popular with students today as evidenced by the low attendance rates for lectures. Many universities are installing spaces designed with tables for group interaction with evolutions on spaces such as the TEAL (Technology Enabled Active Learning) (Massachusetts Institute of Technology, n.d.) and SCALE-UP (Student-Centred Activities for Large-Enrolment Undergraduate Programs) (North Carolina State University, n.d.) models. Technology advances in large screen computers and applications have also aided the move to these collaborative spaces. How well have universities structured learning using these spaces and how have students engaged with the content, technology, space and each other? This paper investigates the application of collaborative learning in such spaces for a cohort of 800+ first year engineers in the context of learning about and developing professional skills representative of engineering practice. PURPOSE To determine whether moving from tiers to tables enhances the student experience. Does utilising technology rich, activity based, collaborative learning spaces lead to positive experiences and active engagement of first year undergraduate engineering students? In developing learning methodology and approach in new learning spaces, what needs to change from a more traditional lecture and tutorial configuration? DESIGN/METHOD A post delivery review and analysis of outcomes was undertaken to determine how well students and tutors engaged with learning in new collaborative learning spaces. Data was gathered via focus group and survey of tutors, students survey and attendance observations. The authors considered the unit delivery approach along with observed and surveyed outcomes then conducted further review to produce the reported results. RESULTS Results indicate high participation in the collaborative sessions while the accompanying lectures were poorly attended. Students reported a high degree of satisfaction with the learning experience; however more investigation is required to determine the degree of improvement in retained learning outcomes. Survey feedback from tutors found that students engaged well in the activities during tutorials and there was an observed improvement in the quality of professional practice modelled by students during sessions. Student feedback confirmed the positive experiences in these collaborative learning spaces with 30% improvement in satisfaction ratings from previous years. CONCLUSIONS It is concluded that the right mix of space, technology and appropriate activities does engage students, improve participation and create a rich experience to facilitate potential for improved learning outcomes. The new Collaborative Teaching Spaces, together with integrated technology and tailored activities, has transformed the delivery of this unit and improved student satisfaction in tutorials significantly.
Resumo:
This paper describes in detail our Security-Critical Program Analyser (SCPA). SCPA is used to assess the security of a given program based on its design or source code with regard to data flow-based metrics. Furthermore, it allows software developers to generate a UML-like class diagram of their program and annotate its confidential classes, methods and attributes. SCPA is also capable of producing Java source code for the generated design of a given program. This source code can then be compiled and the resulting Java bytecode program can be used by the tool to assess the program's overall security based on our security metrics.
Resumo:
Refactoring is a common approach to producing better quality software. Its impact on many software quality properties, including reusability, maintainability and performance, has been studied and measured extensively. However, its impact on the information security of programs has received relatively little attention. In this work, we assess the impact of a number of the most common code-level refactoring rules on data security, using security metrics that are capable of measuring security from the viewpoint of potential information flow. The metrics are calculated for a given Java program using a static analysis tool we have developed to automatically analyse compiled Java bytecode. We ran our Java code analyser on various programs which were refactored according to each rule. New values of the metrics for the refactored programs then confirmed that the code changes had a measurable effect on information security.
Resumo:
The Cross-Entropy (CE) is an efficient method for the estimation of rare-event probabilities and combinatorial optimization. This work presents a novel approach of the CE for optimization of a Soft-Computing controller. A Fuzzy controller was designed to command an unmanned aerial system (UAS) for avoiding collision task. The only sensor used to accomplish this task was a forward camera. The CE is used to reach a near-optimal controller by modifying the scaling factors of the controller inputs. The optimization was realized using the ROS-Gazebo simulation system. In order to evaluate the optimization a big amount of tests were carried out with a real quadcopter.
Resumo:
With the widespread application of healthcare Information and Communication Technology (ICT), constructing a stable and sustainable data sharing circumstance has attracted rapidly growing attention in both academic research area and healthcare industry. Cloud computing is one of long dreamed visions of Healthcare Cloud (HC), which matches the need of healthcare information sharing directly to various health providers over the Internet, regardless of their location and the amount of data. In this paper, we discuss important research tool related to health information sharing and integration in HC and investigate the arising challenges and issues. We describe many potential solutions to provide more opportunities to implement EHR cloud. As well, we introduce the development of a HC related collaborative healthcare research example, thus illustrating the prospective of applying Cloud Computing in the health information science research.
Resumo:
In this study, we explore the design and evaluation of a mobile online discussion system for motivating students to share their learning experiences. The system supports interaction with peers and academic staff anytime and anywhere using mobile devices. The application introduces a set of features that enables customisation for different purposes. This paper describes the application and explains the motivation for developing the application. We describe the methods and results of a case study that explores usage of the application among a small group of localised participants. Finally, we discuss the implications of this work and outline future areas of research and development.
Resumo:
There is a growing number of organizations and universities now utilising e-learning practices in their teaching and learning programs. These systems have allowed for knowledge sharing and provide opportunities for users to have access to learning materials regardless of time and place. However, while the uptake of these systems is quite high, there is little research into the effectiveness of such systems, particularly in higher education. This paper investigates the methods that are used to study the effectiveness of e-learning systems and the factors that are critical for the success of a learning management system (LMS). Five major success categories are identified in this study and explained in depth. These are the teacher, student, LMS design, learning materials and external support.
Resumo:
The IEEE Subcommittee on the Application of Probability Methods (APM) published the IEEE Reliability Test System (RTS) [1] in 1979. This system provides a consistent and generally acceptable set of data that can be used both in generation capacity and in composite system reliability evaluation [2,3]. The test system provides a basis for the comparison of results obtained by different people using different methods. Prior to its publication, there was no general agreement on either the system or the data that should be used to demonstrate or test various techniques developed to conduct reliability studies. Development of reliability assessment techniques and programs are very dependent on the intent behind the development as the experience of one power utility with their system may be quite different from that of another utility. The development and the utilization of a reliability program are, therefore, greatly influenced by the experience of a utlity and the intent of the system manager, planner and designer conducting the reliability studies. The IEEE-RTS has proved to be extremely valuable in highlighting and comparing the capabilities (or incapabilities) of programs used in reliability studies, the differences in the perception of various power utilities and the differences in the solution techniques. The IEEE-RTS contains a reasonably large power network which can be difficult to use for initial studies in an educational environment.
Resumo:
Knowledge of cable parameters has been well established but a better knowledge of the environment in which the cables are buried lags behind. Research in Queensland University of Technology has been aimed at obtaining and analysing actual daily field values of thermal resistivity and diffusivity of the soil around power cables. On-line monitoring systems have been developed and installed with a data logger system and buried spheres that use an improved technique to measure thermal resistivity and diffusivity over a short period. Results based on long term continuous field data are given. A probabilistic approach is developed to establish the correlation between the measured field thermal resistivity values and rainfall data from weather bureau records. This data from field studies can reduce the risk in cable rating decisions and provide a basis for reliable prediction of “hot spot” of an existing cable circuit
Resumo:
The reliable operation of the electrical system at Callide Power Station is of extreme importance to the normal everyday running of the Station. This study applied the principles of reliability to do an analysis on the electrical system at Callide Power Station. It was found that the level of expected outage cost increased exponentially with a declining level of maintenance. Concluding that even in a harsh economic electricity market where CS Energy tries and push their plants to the limit, maintenance must not be neglected. A number of system configurations were found to increase the reliability of the system and reduce the expected outage costs. A number of other advantages were identified as a result of using reliability principles to do this study on the Callide electrical system configuration.
Resumo:
This paper describes a new approach to establish the probabilistic cable rating based on cable thermal environment studies. Knowledge of cable parameters has been well established. However the environment in which the cables are buried is not so well understood. Research in Queensland University of Technology has been aimed at obtaining and analysing actual daily field values of thermal resistivity and diffusivity of the soil around power cables. On-line monitoring systems have been developed and installed with a data logger system and buried spheres that use an improved technique to measure thermal resistivity and diffusivity over a short period. Based on the long-term continuous field data for more than 4 years, a probabilistic approach is developed to establish the correlation between the measured field thermal resistivity values and rainfall data from weather bureau records. Hence, a probabilistic cable rating can be established based on monthly probabilistic distribution of thermal resistivity
Resumo:
Reliable communications is one of the major concerns in wireless sensor networks (WSNs). Multipath routing is an effective way to improve communication reliability in WSNs. However, most of existing multipath routing protocols for sensor networks are reactive and require dynamic route discovery. If there are many sensor nodes from a source to a destination, the route discovery process will create a long end-to-end transmission delay, which causes difficulties in some time-critical applications. To overcome this difficulty, the efficient route update and maintenance processes are proposed in this paper. It aims to limit the amount of routing overhead with two-tier routing architecture and introduce the combination of piggyback and trigger update to replace the periodic update process, which is the main source of unnecessary routing overhead. Simulations are carried out to demonstrate the effectiveness of the proposed processes in improvement of total amount of routing overhead over existing popular routing protocols.
Resumo:
This paper summarises the achievements of the Smart Skies Project, a three-year, multi-award winning international project that researched, developed and extensively flight tested four enabling aviation technologies: an electrooptical mid-air collision avoidance system, a static obstacle avoidance system, a mobile ground-based air traffic surveillance system, and a global automated airspace separation management system. The project included the development of manned and unmanned flight test aircraft, which were used to characterise the performance of the prototype systems for a range of realistic scenarios under a variety of environmental conditions. In addition to the collection of invaluable flight data, the project achieved world-firsts in the demonstration of future automated collision avoidance and separation management concepts. This paper summarises these outcomes, the overall objectives of the project, the research and the development of the prototype systems, the engineering of the flight test systems, and the results obtained from flight-testing.