999 resultados para EASTERN FINLAND
Resumo:
Huom! Kirjan sisällysluettelo viittaa laulujen alkusanoihin.
Resumo:
Huom! Kirjan sisällysluettelo viittaa laulujen alkusanoihin.
Resumo:
This study considered the current situation of biofuels markets in Finland. The fact that industry consumes more than half of the total primary energy, widely applied combined heat and power production and a high share of solid biomass fuels in the total energy consumption are specific to the Finnish energy system. Wood is the most important source of bioenergy in Finland, representing 21% of the total energy consumption in 2006. Almost 80% of the wood-based energy is recovered from industrial by-products and residues. Finland has commitment itself to maintaining its greenhouse gas emissions at the 1990 level, at the highest, during the period 2008–2012. The energy and climate policy carried out in recent years has been based on the National Energy and Climate introduced in 2005. The Finnish energy policy aims to achieve the target, and a variety of measures are taken to promote the use of renewable energy sources and especially wood fuels. In 2007, the government started to prepare a new long-term (up to the year 2050) climate and energy strategy that will meet EU’s new targets for the reduction of green house gas emissions and the promotion of renewable energy sources. The new strategy will be introduced during 2008. The international biofuels trade has a substantial importance for the utilisation of bioenergy in Finland. In 2006, the total international trading of solid and liquid biofuels was approximately 64 PJ of which import was 61 PJ. Most of the import is indirect and takes place within the forest industry’s raw wood imports. In 2006, as much as 24% of wood energy was based on foreignorigin wood. Wood pellets and tall oil form the majority of export streams of biofuels. The indirect import of wood fuels increased almost 10% in 2004–2006, while the direct trade of solid and liquid biofuels has been almost constant.
Resumo:
Tämän tutkimuksen tarkoituksena on ymmärtää yritystä oppivana organisaationa ja selvittää onko Syväjohtamisen valmennusmalli ja työkalu Peik-ko Finland Oy:lle organisaation ja yksilön oppimista tukevaa. Tutkimus on laadullinen tutkimus, jossa tutkimusaineiston muodostavat Peikko Finland Oy:n johdon ja esimiestehtävissä olevien henkilöiden teemahaastattelut. Tutkimuksen perusteella voidaan todeta, että Syväjohtamisen valmen-nusmalli on yrityksen ja yksilön oppimisen kannalta toimiva työkalu, joka ulkoisen valmennuksen jälkeen tulisi ylläpitää sisäisellä toimintamallilla. Oleellista on ulkoisen valmennuksen jatkamisen yhteydessä lisätä etukäteisinfon osuutta ennen valmennuksen alkamista. Peikko Finland Oy:ssä organisaation ja yksilön oma oppiminen edellyttää yritykseltä oppimista tukevien työkalujen ja yrityksen sisäisen toimintamallin toteuttamista, jonka avulla mahdollisestaan koko organisaation oppiminen ja yhteisten tavoitteiden ymmärtäminen.
Resumo:
Russian and Baltic electricity markets are in the process of reformation and development on the way for competitive and transparent market. Nordic market also undergoes some changes on the way to market integration. Old structure and practices have been expired whereas new laws and rules come into force. The master thesis describes structure and functioning of wholesale electricity markets, cross-border connections between different countries. Additionally methods of cross-border trading using different methods of capacity allocation are disclosed. The main goal of present thesis is to study current situation at different electricity markets and observe changes coming into force as well as the capacity and electricity balances forecast in order to optimize short term power trading between countries and estimate the possible profit for the company.
Resumo:
Konferenssijulkaisu
Resumo:
The purpose of the METKU Project (Development of Maritime Safety Culture) is to study how the ISM Code has influenced the safety culture in the maritime industry. This literature review is written as a part of the Work Package 2 which is conducted by the University of Turku, Centre for Maritime Studies. The maritime traffic is rapidly growing in the Baltic Sea which leads to a growing risk of maritime accidents. Particularly in the Gulf of Finland, the high volume of traffic causes a high risk of maritime accidents. The growing risks give us good reasons for implementing the research project concerning maritime safety and the effectiveness of the safety measures, such as the safety management systems. In order to reduce maritime safety risks, the safety management systems should be further developed. The METKU Project has been launched to examine the improvements which can be done to the safety management systems. Human errors are considered as the most important reason for maritime accidents. The international safety management code (the ISM Code) has been established to cut down the occurrence of human errors by creating a safety-oriented organizational culture for the maritime industry. The ISM Code requires that a company should provide safe practices in ship operation and a safe working environment and establish safeguards against all identified risk. The fundamental idea of the ISM Code is that companies should continuously improve safety. The commitment of the top management is essential for implementing a safety-oriented culture in a company. The ISM Code has brought a significant contribution to the progress of maritime safety in recent years. Shipping companies and ships’ crews are more environmentally friendly and more safety-oriented than 12 years ago. This has been showed by several studies which have been analysed for this literature research. Nevertheless, the direct effect and influence of the ISM Code on maritime safety could not be isolated very well. No quantitative measurement (statistics/hard data) could be found in order to present the impacts of the ISM Code on maritime safety. In this study it has been discovered that safety culture has emerged and it is developing in the maritime industry. Even though the roots of the safety culture have been established there are still serious barriers to the breakthrough of the safety management. These barriers could be envisaged as cultural factors preventing the safety process. Even though the ISM Code has been effective over a decade, the old-established behaviour which is based on the old day’s maritime culture still occurs. In the next phase of this research project, these cultural factors shall be analysed in regard to the present safety culture of the maritime industry in Finland.
Resumo:
The Gulf of Finland is said to be one of the densest operated sea areas in the world. It is a shallow and economically vulnerable sea area with dense passenger and cargo traffic of which petroleum transports have a share of over 50 %. The winter conditions add to the risks of maritime traffic in the Gulf of Finland. It is widely believed that the growth of maritime transportation will continue also in the future. The Gulf of Finland is surrounded by three very different national economies with, different maritime transportation structures. Finland is a country of high GDP/per capita with a diversified economic structure. The number of ports is large and the maritime transportation consists of many types of cargoes: raw materials, industrial products, consumer goods, coal and petroleum products, and the Russian transit traffic of e.g. new cars and consumer goods. Russia is a large country with huge growth potential; in recent years, the expansion of petroleum exports has lead to a strong economic growth, which is also apparent in the growth of maritime transports. Russia has been expanding its port activities in the Gulf of Finland and it is officially aiming to transport its own imports and exports through the Russian ports in the future; now they are being transported to great extend through the Finnish, Estonian and other Baltic ports. Russia has five ports in the Gulf of Finland. Estonia has also experienced fast economic growth, but the growth has been slowing down already during the past couples of years. The size of its economy is small compared to Russia, which means the transported tonnes cannot be very massive. However, relatively large amounts of the Russian petroleum exports have been transported through the Estonian ports. The future of the Russian transit traffic in Estonia looks nevertheless uncertain and it remains to be seen how it will develop and if Estonia is able to find replacing cargoes if the Russian transit traffic will come to an end in the Estonian ports. Estonia’s own import and export consists of forestry products, metals or other raw materials and consumer goods. Estonia has many ports on the shores of the Gulf of Finland, but the port of Tallinn dominates the cargo volumes. In 2007, 263 M tonnes of cargoes were transported in the maritime traffic in the Gulf of Finland, of which the share of petroleum products was 56 %. 23 % of the cargoes were loaded or unloaded in the Finnish ports, 60 % in the Russian ports and 17 % in the Estonian ports. The largest ports were Primorsk (74.2 M tonnes) St. Petersburg (59.5 M tonnes), Tallinn (35.9 M tonnes), Sköldvik (19.8 M tonnes), Vysotsk (16.5 M tonnes) and Helsinki (13.4 M) tonnes. Approximately 53 600 ship calls were made in the ports of the Gulf of Finland. The densest traffic was found in the ports of St. Petersburg (14 651 ship calls), Helsinki (11 727 ship calls) and Tallinn (10 614 ship calls) in 2007. The transportation scenarios are usually based on the assumption that the amount of transports follows the development of the economy, although also other factors influence the development of transportation, e.g. government policy, environmental aspects, and social and behavioural trends. The relationship between the development of transportation and the economy is usually analyzed in terms of the development of GDP and trade. When the GDP grows to a certain level, especially the international transports increase because countries of high GDP produce, consume and thus transport more. An effective transportation system is also a precondition for the economic development. In this study, the following factors were taken into consideration when formulating the future scenarios: maritime transportation in the Gulf of Finland 2007, economic development, development of key industries, development of infrastructure and environmental aspects in relation to maritime transportation. The basic starting points for the three alternative scenarios were: • the slow growth scenario: economic recession • the average growth scenario: economy will recover quickly from current instability • the strong growth scenario: the most optimistic views on development will realize According to the slow growth scenario, the total tonnes for the maritime transportation in the Gulf of Finland would be 322.4 M tonnes in 2015, which would mean a growth of 23 % compared to 2007. In the average growth scenario, the total tonnes were estimated to be 431.6 M tonnes – a growth of 64 %, and in the strong growth scenario 507.2 M tonnes – a growth of 93%. These tonnes were further divided into petroleum products and other cargoes by country, into export, import and domestic traffic by country, and between the ports. For petroleum products, the share of crude oil and oil products was estimated and the number of tanker calls in 2015 was calculated for each scenario. However, the future development of maritime transportation in the GoF is dependent on so many societal and economic variables that it is not realistic to predict one exact point estimate value for the cargo tonnes for a certain scenario. Plenty of uncertainty is related both to the degree in which the scenario will come true as well as to the cause-effect relations between the different variables. For these reasons, probability distributions for each scenario were formulated by an expert group. As a result, a range for the total tonnes of each scenario was formulated and they are as follows: the slow growth scenario: 280.8 – 363 M tonnes (expectation value 322.4 M tonnes)
Resumo:
During the last few years, the discussion on the marginal social costs of transportation has been active. Applying the externalities as a tool to control transport would fulfil the polluter pays principle and simultaneously create a fair control method between the transport modes. This report presents the results of two calculation algorithms developed to estimate the marginal social costs based on the externalities of air pollution. The first algorithm calculates the future scenarios of sea transport traffic externalities until 2015 in the Gulf of Finland. The second algorithm calculates the externalities of Russian passenger car transit traffic via Finland by taking into account both sea and road transport. The algorithm estimates the ship-originated emissions of carbon dioxide (CO2), nitrogen oxides (NOx), sulphur oxides (SOx), particulates (PM) and the externalities for each year from 2007 to 2015. The total NOx emissions in the Gulf of Finland from the six ship types were almost 75.7 kilotons (Table 5.2) in 2007. The ship types are: passenger (including cruisers and ROPAX vessels), tanker, general cargo, Ro-Ro, container and bulk vessels. Due to the increase of traffic, the estimation for NOx emissions for 2015 is 112 kilotons. The NOx emission estimation for the whole Baltic Sea shipping is 370 kilotons in 2006 (Stipa & al, 2007). The total marginal social costs due to ship-originated CO2, NOx, SOx and PM emissions in the GOF were calculated to almost 175 million Euros in 2007. The costs will increase to nearly 214 million Euros in 2015 due to the traffic growth. The major part of the externalities is due to CO2 emissions. If we neglect the CO2 emissions by extracting the CO2 externalities from the results, we get the total externalities of 57 million Euros in 2007. After eight years (2015), the externalities would be 28 % lower, 41 million Euros (Table 8.1). This is the result of the sulphur emissions reducing regulation of marine fuels. The majority of the new car transit goes through Finland to Russia due to the lack of port capacity in Russia. The amount of cars was 339 620 vehicles (Statistics of Finnish Customs 2008) in 2005. The externalities are calculated for the transportation of passenger vehicles as follows: by ship to a Finnish port and, after that, by trucks to the Russian border checkpoint. The externalities are between 2 – 3 million Euros (year 2000 cost level) for each route. The ports included in the calculations are Hamina, Hanko, Kotka and Turku. With the Euro-3 standard trucks, the port of Hanko would be the best choice to transport the vehicles. This is because of lower emissions by new trucks and the saved transport distance of a ship. If the trucks are more polluting Euro 1 level trucks, the port of Kotka would be the best choice. This indicates that the truck emissions have a considerable effect on the externalities and that the transportation of light cargo, such as passenger cars by ship, produces considerably high emission externalities. The emission externalities approach offers a new insight for valuing the multiple traffic modes. However, the calculation of the marginal social costs based on the air emission externalities should not be regarded as a ready-made calculation system. The system is clearly in the need of some improvement but it can already be considered as a potential tool for political decision making.
Resumo:
Samlingen med signum HB Vb4a-b finns vid huvudbiblioteket och innehåller litteratur om Finlands och Sveriges historia till och med år 1999. Vid Humanistiska biblioteket finns en historisk samling i anslutning till ämnet Historia. Från och med år 1919 har samlingen av finländsk historisk litteratur utökats genom friexemplarsrätten. Ett systematiskt anskaffande genom köp av nordiskt historiskt material har inneburit att beståndet av svensk historisk litteratur är omfattande. Biblioteket emottog under första hälften av 1900-talet såväl från hemlandet som från Sverige talrika donationer innehållande historisk litteratur. Bland donationerna bör några verkligen betydande och speciella samlingar nämnas. Professor Ernst Estlander donerade en stor, sällsynt och fullständig samling av tryckta, hektograferade eller på annat sätt mångfaldigade politiska skrifter från ofärdsåren i Finland 1899-1905. Likaså ingår tryck och urklipp om ofärdsåren i Lithanderska samlingen. I bägge specialsamlingarna ingår material som inte har katalogiserats. En specialsamling benämnd Schaumanska samlingen donerades av kammarrådet Carl Schauman och hans son publicisten August Schauman. Samlingen innehåller mycket gammal litteratur från olika ämnesområden, också nordisk historia. Specialsamlingen är katalogiserad i kortkatalog. Litteraturen i samlingen söks i Alma med sökfunktionen Signum och söktermen HB Vb4a-b. En del litteratur tryckt före 1980 söks manuellt i den systematiska kortkatalogen, men retroaktiv inmatning i Alma av litteratur tryckt mellan 1830 och 1979 pågår. Från och med år 2000 ingår litteraturen vid huvudbiblioteket om Finlands och om Sveriges historia i en numerus currens-samling. Litteraturen vid hela akademibiblioteket från och med nämnda år fås genom ämnesordssökning.
Resumo:
Gustaf (Gösta) Sundman (1854-1914) tuli tunnetuksi korkeatasoisten luonnontieteellisten kuvateosten kuvittajana. Finlands fiskar –teos ilmestyi kahtenatoista vihkona 1883-1893, upeat, metallihohtoiset kalojen kuvat irrallisina tauluina. Kalateokset tekstit ovat eläintieteen professori O. M. Reuterin ja eläintieteellisen museon amanuenssin A. J. Melan laatimia.
Resumo:
Into Konrad Inhan (1865-1930) teoksen vaikuttavat kuvat ovat syntyneet pitkillä keruumatkoilla kautta Suomen ja Vienan Karjalan. Inha kuvaa valokuvan keinoin suomalaista maisemaa, kansanelämää, työntekoa, rakennuksia ja jo myös tehdasympäristöä. Inhan laatimat kuvien selitystekstit ovat suomeksi, ruotsiksi, venäjäksi, ranskaksi ja englanniksi.