604 resultados para Differentiable Algebras
Resumo:
For each quantum superalgebra U-q[osp(m parallel to n)] with m > 2, an infinite family of Casimir invariants is constructed. This is achieved by using an explicit form for the Lax operator. The eigenvalue of each Casimir invariant on an arbitrary irreducible highest weight module is also calculated. (c) 2005 American Institute of Physics.
Resumo:
The Drinfeld twist for the opposite quasi-Hopf algebra, H-COP, is determined and is shown to be related to the (second) Drinfeld twist on a quasi-Hopf algebra. The twisted form of the Drinfeld twist is investigated. In the quasi-triangular case, it is shown that the Drinfeld u-operator arises from the equivalence of H-COP to the quasi-Hopf algebra induced by twisting H with the R-matrix. The Altschuler-Coste u-operator arises in a similar way and is shown to be closely related to the Drinfeld u-operator. The quasi-cocycle condition is introduced and is shown to play a central role in the uniqueness of twisted structures on quasi-Hopf algebras. A generalization of the dynamical quantum Yang-Baxter equation, called the quasi-dynamical quantum Yang-Baxter equation, is introduced.
Resumo:
We review the recent progress on the construction of the determinant representations of the correlation functions for the integrable supersymmetric fermion models. The factorizing F-matrices (or the so-called F-basis) play an important role in the construction. In the F-basis, the creation (and the annihilation) operators and the Bethe states of the integrable models are given in completely symmetric forms. This leads to the determinant representations of the scalar products of the Bethe states for the models. Based on the scalar products, the determinant representations of the correlation functions may be obtained. As an example, in this review, we give the determinant representations of the two-point correlation function for the U-q(gl(2 vertical bar 1)) (i.e. q-deformed) supersymmetric t-J model. The determinant representations are useful for analyzing physical properties of the integrable models in the thermodynamical limit.
Resumo:
We introduce a general Hamiltonian describing coherent superpositions of Cooper pairs and condensed molecular bosons. For particular choices of the coupling parameters, the model is integrable. One integrable manifold, as well as the Bethe ansatz solution, was found by Dukelsky et al. [J. Dukelsky, G.G. Dussel, C. Esebbag, S. Pittel, Phys. Rev. Lett. 93 (2004) 050403]. Here we show that there is a second integrable manifold, established using the boundary quantum inverse scattering method. In this manner we obtain the exact solution by means of the algebraic Bethe ansatz. In the case where the Cooper pair energies are degenerate we examine the relationship between the spectrum of these integrable Hamiltonians and the quasi-exactly solvable spectrum of particular Schrodinger operators. For the solution we derive here the potential of the Schrodinger operator is given in terms of hyperbolic functions. For the solution derived by Dukelsky et al., loc. cit. the potential is sextic and the wavefunctions obey PT-symmetric boundary conditions. This latter case provides a novel example of an integrable Hermitian Hamiltonian acting on a Fock space whose states map into a Hilbert space of PE-symmetric wavefunctions defined on a contour in the complex plane. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The Perk-Schultz model may be expressed in terms of the solution of the Yang-Baxter equation associated with the fundamental representation of the untwisted affine extension of the general linear quantum superalgebra U-q (gl(m/n)], with a multiparametric coproduct action as given by Reshetikhin. Here, we present analogous explicit expressions for solutions of the Yang-Baxter equation associated with the fundamental representations of the twisted and untwisted affine extensions of the orthosymplectic quantum superalgebras U-q[osp(m/n)]. In this manner, we obtain generalizations of the Perk-Schultz model.
Resumo:
We survey several applications of Simons’ inequality and state related open problems. We show that if a Banach space X has a strongly sub-differentiable norm, then every bounded weakly closed subset of X is an intersection of finite union of balls.
Resumo:
Partially supported by grant RFFI 98-01-01020.
Resumo:
Some relationships between representations of a hypergroup X, its algebras, and positive definite functions on X are studied. Also, various types of convergence of positive definite functions on X are discussed.
Resumo:
This paper is a survey of our recent results on the bispectral problem. We describe a new method for constructing bispectral algebras of any rank and illustrate the method by a series of new examples as well as by all previously known ones. Next we exhibit a close connection of the bispectral problem to the representation theory of W1+∞–algerba. This connection allows us to explain and generalise to any rank the result of Magri and Zubelli on the symmetries of the manifold of the bispectral operators of rank and order two.
Resumo:
* Supported by grants: AV ĈR 101-95-02, GAĈR 201-94-0069 (Czech Republic) and NSERC 7926 (Canada).
Resumo:
* Supported by NSERC (Canada)