947 resultados para Different mechanisms


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electronically nonadiabatic decomposition pathways of guanidium triazolate are explored theoretically. Nonadiabatically coupled potential energy surfaces are explored at the complete active space self-consistent field (CASSCF) level of theory. For better estimation of energies complete active space second order perturbation theories (CASPT2 and CASMP2) are also employed. Density functional theory (DFT) with B3LYP functional and MP2 level of theory are used to explore subsequent ground state decomposition pathways. In comparison with all possible stable decomposition products (such as, N-2, NH3, HNC, HCN, NH2CN and CH3NC), only NH3 (with NH2CN) and N-2 are predicted to be energetically most accessible initial decomposition products. Furthermore, different conical intersections between the S-1 and S-0 surfaces, which are computed at the CASSCF(14,10)/6-31G(d) level of theory, are found to play an essential role in the excited state deactivation process of guanidium triazolate. This is the first report on the electronically nonadiabatic decomposition mechanisms of isolated guanidium triazolate salt. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work intends to demonstrate the effect of geometrically non-linear cross-sectional analysis of certain composite beam-based four-bar mechanisms in predicting the three-dimensional warping of the cross-section. The only restriction in the present analysis is that the strains within each elastic body remain small (i.e., this work does not deal with materials exhibiting non-linear constitutive laws at the 3-D level). Here, all component bars of the mechanism are made of fiber-reinforced laminates. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. Each component of the mechanism is modeled as a beam based on geometrically non-linear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and non-linear 1-D analyses along the three beam reference curves. The splitting of the three-dimensional beam problem into two- and one-dimensional parts, called dimensional reduction, results in a tremendous savings of computational effort relative to the cost of three-dimensional finite element analysis, the only alternative for realistic beams. The analysis of beam-like structures made of laminated composite materials requires a much more complicated methodology. Hence, the analysis procedure based on Variational Asymptotic Method (VAM), a tool to carry out the dimensional reduction, is used here. The representative cross-sections of all component bars are analyzed using two different approaches: (1) Numerical Model and (2) Analytical Model. Four-bar mechanisms are analyzed using the above two approaches for Omega = 20 rad/s and Omega = pi rad/s and observed the same behavior in both cases. The noticeable snap-shots of the deformation shapes of the mechanism about 1000 frames are also reported using commercial software (I-DEAS + NASTRAN + ADAMS). The maximum out-of-plane warping of the cross-section is observed at the mid-span of bar-1, bar-2 and bar-3 are 1.5 mm, 250 mm and 1.0 mm, respectively, for t = 0:5 s. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fiber-reinforced plastics (FRPs) are typically difficult to machine due to their highly heterogeneous and anisotropic nature and the presence of two phases (fiber and matrix) with vastly different strengths and stiffnesses. Typical machining damage mechanisms in FRPs include series of brittle fractures (especially for thermosets) due to shearing and cracking of matrix material, fiber pull-outs, burring, fuzzing, fiber-matrix debonding, etc. With the aim of understanding the influence of the pronounced heterogeneity and anisotropy observed in FRPs, ``Idealized'' Carbon FRP (I-CFRP) plates were prepared using epoxy resin with embedded equispaced tows of carbon fibers. Orthogonal cutting of these I-CFRPs was carried out, and the chip formation characteristics, cutting force signals and strain distributions obtained during machining were analyzed using the Digital Image Correlation (DIC) technique. In addition, the same procedure was repeated on Uni-Directional CFRPs (UD-CFRPs). Chip formation mechanisms in FRPs were found to depend on the depth of cut and fiber orientation with pure epoxy showing a pronounced ``size effect.'' Experimental results indicate that in-situ full field strain measurements from DIC coupled with force measurements using dynamometry provide an adequate measure of anisotropy and heterogeneity during orthogonal cutting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In situ compressive tests on specially designed small samples made from brittle metallic foams were accomplished in a loading device equipped in the scanning electron microscopy (SEM). Each of the small samples comprises only several cells in the effective test zone (ETZ), with one major cell in the middle. In such a system one can not only obtain sequential collapse-process images of a single cell and its cell walls with high resolution, but also correlate the detailed failure behaviour of the cell walls with the stress-strain response, therefore reveal the mechanisms of energy absorption in the mesoscopic scale. Meanwhile, the stress-strain behaviour is quite different from that of bulk foams in dimensions of enough large, indicating a strong size effect. According to the in situ observations, four failure modes in the cell-wall level were summarized, and these modes account for the mesoscopic mechanisms of energy absorption. Paralleled compression tests on bulk samples were also carried out, and it is found that both fracturing of a single cell and developing of fracture bands are defect-directed or weakness-directed processes. The mechanical properties of the brittle aluminum foams obtained from the present tests agree well with the size effect model for ductile cellular solids proposed by Onck et al. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metallic nanowires have many attractive properties such as ultra-high yield strength and large tensile elongation. However, recent experiments show that metallic nanowires often contain grain boundaries, which are expected to significantly affect mechanical properties. By using molecular dynamics simulations, here, we demonstrate that polycrystalline Cu nanowires exhibit tensile deformation behavior distinctly different from their single-crystal counterparts. A significantly lowered yield strength was observed as a result of dislocation emission from grain boundaries rather than from free surfaces, despite of the very high surface to volume ratio. Necking starts from the grain boundary followed by fracture, resulting in reduced tensile ductility. The high stresses found in the grain boundary region clearly play a dominant role in controlling both inelastic deformation and fracture processes in nanoscale objects. These findings have implications for designing stronger and more ductile structures and devices on nanoscale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poster presentado 12th Symposium on Aquatic Microbial Ecology (SAME12) August 28 – September 02, 2011 Germany , Rostock–Warnemünde

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser bending mechanism is remarked, and its essence is the temperature gradient mechanism. The reverse bending and the thickened mechanisms are included in the temperature gradient mechanism because they are only different phenomena based on different thickness of the material. Experimental result shows that there is a kind of un-convention temperature distribution in the limit thickness specimen under laser irradiation. This phenomenon cannot be explained by the classical Fourier Law and is defined as Pan-Fourier effect in order to explain laser bending mechanism further.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteolytic enzymes have evolved several mechanisms to cleave peptide bonds. These distinct types have been systematically categorized in the MEROPS database. While a BLAST search on these proteases identifies homologous proteins, sequence alignment methods often fail to identify relationships arising from convergent evolution, exon shuffling, and modular reuse of catalytic units. We have previously established a computational method to detect functions in proteins based on the spatial and electrostatic properties of the catalytic residues (CLASP). CLASP identified a promiscuous serine protease scaffold in alkaline phosphatases (AP) and a scaffold recognizing a beta-lactam (imipenem) in a cold-active Vibrio AP. Subsequently, we defined a methodology to quantify promiscuous activities in a wide range of proteins. Here, we assemble a module which encapsulates the multifarious motifs used by protease families listed in the MEROPS database. Since APs and proteases are an integral component of outer membrane vesicles (OMV), we sought to query other OMV proteins, like phospholipase C (PLC), using this search module. Our analysis indicated that phosphoinositide-specific PLC from Bacillus cereus is a serine protease. This was validated by protease assays, mass spectrometry and by inhibition of the native phospholipase activity of PI-PLC by the well-known serine protease inhibitor AEBSF (IC50 = 0.018 mM). Edman degradation analysis linked the specificity of the protease activity to a proline in the amino terminal, suggesting that the PI-PLC is a prolyl peptidase. Thus, we propose a computational method of extending protein families based on the spatial and electrostatic congruence of active site residues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The materials considered in our analysis were ZrB2 ceramic matrix composites. Effect of two different additives (graphite and AlN) on thermal shock stability for the materials was measured by water quench test. It showed that it may provide more stable thermal shock properties with additives of graphite. It was explained by different thermal properties and crack resistance of the two materials in detail. Surface oxidation was one of main reasons for strength degradation of ceramic with additives of graphite after quenched in water, and surface crack was one of main reasons for strength degradation of ceramic with additives of AlN after quenched in water. It was presented that it was a potential method for improving thermal shock stability of ZrB2 ceramic matrix composites by introducing proper quantities of graphite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fundamental question in neuroscience is how distributed networks of neurons communicate and coordinate dynamically and specifically. Several models propose that oscillating local networks can transiently couple to each other through phase-locked firing. Coherent local field potentials (LFP) between synaptically connected regions is often presented as evidence for such coupling. The physiological correlates of LFP signals depend on many anatomical and physiological factors, however, and how the underlying neural processes collectively generate features of different spatiotemporal scales is poorly understood. High frequency oscillations in the hippocampus, including gamma rhythms (30-100 Hz) that are organized by the theta oscillations (5-10 Hz) during active exploration and REM sleep, as well as sharp wave-ripples (SWRs, 140-200 Hz) during immobility or slow wave sleep, have each been associated with various aspects of learning and memory. Deciphering their physiology and functional consequences is crucial to understanding the operation of the hippocampal network.

We investigated the origins and coordination of high frequency LFPs in the hippocampo-entorhinal network using both biophysical models and analyses of large-scale recordings in behaving and sleeping rats. We found that the synchronization of pyramidal cell spikes substantially shapes, or even dominates, the electrical signature of SWRs in area CA1 of the hippocampus. The precise mechanisms coordinating this synchrony are still unresolved, but they appear to also affect CA1 activity during theta oscillations. The input to CA1, which often arrives in the form of gamma-frequency waves of activity from area CA3 and layer 3 of entorhinal cortex (EC3), did not strongly influence the timing of CA1 pyramidal cells. Rather, our data are more consistent with local network interactions governing pyramidal cells' spike timing during the integration of their inputs. Furthermore, the relative timing of input from EC3 and CA3 during the theta cycle matched that found in previous work to engage mechanisms for synapse modification and active dendritic processes. Our work demonstrates how local networks interact with upstream inputs to generate a coordinated hippocampal output during behavior and sleep, in the form of theta-gamma coupling and SWRs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis focuses on improving the simulation skills and the theoretical understanding of the subtropical low cloud response to climate change.

First, an energetically consistent forcing framework is designed and implemented for the large eddy simulation (LES) of the low-cloud response to climate change. The three representative current-day subtropical low cloud regimes of cumulus (Cu), cumulus-over-stratocumulus, and stratocumulus (Sc) are all well simulated with this framework, and results are comparable to the conventional fixed-SST approach. However, the cumulus response to climate warming subject to energetic constraints differs significantly from the conventional approach with fixed SST. Under the energetic constraint, the subtropics warm less than the tropics, since longwave (LW) cooling is more efficient with the drier subtropical free troposphere. The surface latent heat flux (LHF) also increases only weakly subject to the surface energetic constraint. Both factors contribute to an increased estimated inversion strength (EIS), and decreased inversion height. The decreased Cu-depth contributes to a decrease of liquid water path (LWP) and weak positive cloud feedback. The conventional fixed-SST approach instead simulates a strong increase in LHF and deepening of the Cu layer, leading to a weakly negative cloud feedback. This illustrates the importance of energetic constraints to the simulation and understanding of the sign and magnitude of low-cloud feedback.

Second, an extended eddy-diffusivity mass-flux (EDMF) closure for the unified representation of sub-grid scale (SGS) turbulence and convection processes in general circulation models (GCM) is presented. The inclusion of prognostic terms and the elimination of the infinitesimal updraft fraction assumption makes it more flexible for implementation in models across different scales. This framework can be consistently extended to formulate multiple updrafts and downdrafts, as well as variances and covariances. It has been verified with LES in different boundary layer regimes in the current climate, and further development and implementation of this closure may help to improve our simulation skills and understanding of low-cloud feedback through GCMs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resveratrol is a non-flavonoid polyphenol which belongs to the stilbenes group and is produced naturally in several plants in response to injury or fungal attack. Resveratrol has been recently reported as preventing obesity. The present review aims to compile the evidence concerning the potential mechanisms of action which underlie the anti-obesity effects of resveratrol, obtained either in cultured cells lines and animal models. Published studies demonstrate that resveratrol has an anti-adipogenic effect. A good consensus concerning the involvement of a down-regulation of C/EBPa and PPAR. in this effect has been reached. Also, in vitro studies have demonstrated that resveratrol can increase apoptosis in mature adipocytes. Furthermore, different metabolic pathways involved in triacylglycerol metabolism in white adipose tissue have been shown to be targets for resveratrol. Both the inhibition of de novo lipogenesis and adipose tissue fatty acid uptake mediated by lipoprotein lipase play a role in explaining the reduction in body fat which resveratrol induces. As far as lipolysis is concerned, although this compound per se seems to be unable to induce lipolysis, it increases lipid mobilization stimulated by beta-adrenergic agents. The increase in brown adipose tissue thermogenesis, and consequently the associated energy dissipation, can contribute to explaining the body-fat lowering effect of resveratrol. In addition to its effects on adipose tissue, resveratrol can also acts on other organs and tissues. Thus, it increases mitochondriogenesis and consequently fatty acid oxidation in skeletal muscle and liver. This effect can also contribute to the body-fat lowering effect of this molecule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wastewater treatment reduces environmental contamination by removing gross solids and mitigating the effects of pollution. Treatment also reduces the number of indicator organisms and pathogens. In this work, the fates of two coliform bacteria, Escherichia coli and Serratia marcescens, were analyzed in an activated sludge process to determine the main mechanisms involved in the reduction of pathogenic microorganisms during wastewater treatment. These bacteria, modified to express green fluorescent protein, were inoculated in an activated sludge unit and in batch systems containing wastewater. The results suggested that, among the different biological factors implied in bacterial removal, bacterivorous protozoa play a key role. Moreover, a representative number of bacteria persisted in the system as free-living or embedded cells, but their distribution into liquid or solid fractions varied depending on the bacterium tested, questioning the real value of bacterial indicators for the control of wastewater treatment process. Additionally, viable but nonculturable cells constituted an important part of the bacterial population adhered to solid fractions, what can be derived from the competition relationships with native bacteria, present in high densities in this environment. These facts, taken together, emphasize the need for reliable quantitative and qualitative analysis tools for the evaluation of pathogenic microbial composition in sludge, which could represent an undefined risk to public health and ecosystem functions when considering its recycling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ta2O5 films are deposited on fused silica substrates by conventional electron beam evaporation method. By annealing at different temperatures, Ta2O5 films of amorphous, hexagonal and orthorhombic phases are obtained and confirmed by x-ray diffractometer ( XRD) results. X-ray photoelectron spectroscopy ( XPS) analysis shows that chemical composition of all the films is stoichiometry. It is found that the amorphous Ta2O5 film achieves the highest laser induced damage threshold ( LIDT) either at 355 or 1064 nm, followed by hexagonal phase and finally orthorhombic phase. The damage morphologies at 355 and 1064 nm are different as the former shows a uniform fused area while the latter is centred on one or more defect points, which is induced by different damage mechanisms. The decrease of the LIDT at 1064nm is attributed to the increasing structural defect, while at 355nm is due to the combination effect of the increasing structural defect and decreasing band gap energy.