839 resultados para Delivery (Obstetrics)
Resumo:
Interest in bacteriophages as therapeutic agents has recently been reawakened. Parenteral delivery is the most routinely-employed method of administration. However, injection of phages has numerous disadvantages, such as the requirement of a health professional for administration and the possibility of cross-contamination. Transdermal delivery offers one potential means of overcoming many of these problems. The present study utilized a novel poly (carbonate) (PC) hollow microneedle (MN) device for the transdermal delivery of Escherichia coli-specific 14 bacteriophages both in vitro and in vivo. MN successfully achieved bacteriophage delivery in vitro across dermatomed and full thickness skin. A concentration of 2.67 x 10(6) PFU/ml (plaque forming units per ml) was detected in the receiver compartment when delivered across dermatomed skin and 4.0 x 10(3) PFU/ml was detected in the receiver compartment when delivered across full thickness skin. An in vivo study resulted in 4.13 x 10(3) PFU/ml being detected in blood 30 min following initial MN-mediated phage administration. Clearance occurred rapidly, with phages being completely cleared from the systemic circulation within 24 h, which was expected in the absence of infection. We have shown here that MN-mediated delivery allows successful systemic phage absorption. Accordingly, bacteriophage-based therapeutics may now have an alternative route for systemic delivery. Once fully-investigated, this could lead to more widespread investigation of these interesting therapeutic viruses. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
It is often believed that both ionic liquids and surfactants generally behave as non-specific denaturants of proteins. In this paper, it is shown that amphiphilic ionic liquids bearing a long alkyl chain and a target molecule, where the target molecule is appended via a carboxylic ester functionality, can represent super-substrates that enable the catalytic activity of an enzyme, even at high concentrations in solution. Menthol has been chosen as the target molecule for slow and controlled fragrance delivery, and it was found that the rate of the menthol release can be controlled by the chemical structure of the ionic liquid. At a more fundamental level, this study offers an insight into the complex hydrophobic, electrostatic, and hydrogen bond interactions between the enzyme and substrate.
Resumo:
The potential of a microparticulate vaccine delivery system in eliciting a specific mucosal antibody response in the respiratory tract of mice was evaluated. Two vaccine candidate peptides representing epitopes from the G attachment and F fusion antigens from bovine respiratory syncytial virus (BRSV) were encapsulated into poly(dl- lactide co-glycolide) biodegradable microparticles. The encapsulation process did not denature the entrapped peptides as verified by detection of peptide-specific antibodies in mucosal secretions by ELISA using peptide as antigen. Following intranasal immunisation, the encapsulated peptides induced stronger upper and lower respiratory tract specific-IgA responses, respectively, than the soluble peptide forms. Moreover, a strong peptide-specific cell-mediated immune response was measured in splenocytes in vitro from the mice inoculated with the encapsulated peptides compared to their soluble form alone indicating that migration of primed T cells had taken place from the site of mucosal stimulation in the upper respiratory tract to the spleen. These results act as a foundation for vaccine efficacy studies in large animal BRSV challenge models.
Resumo:
Objective The phenotype of the antioxidant and pro-angiogenicprotein haptoglobin (Hp) predicts cardiovascular disease risk andtreatment response to antioxidant vitamins in individuals withdiabetes. Our objective was to determine whether Hp phenotypeinfluences pre-eclampsia risk, or the efficacy of vitamins C and Ein preventing pre-eclampsia, in women with type-1 diabetes.
Design This is a secondary analysis of a randomised controlledtrial in which women with diabetes received daily vitamins C andE, or placebo, from 8 to 22 weeks of gestation until delivery.
Setting Twenty-five antenatal metabolic clinics across the UK (innorth-west England, Scotland, and Northern Ireland).
Population Pregnant women with type-1 diabetes.
Methods Hp phenotype was determined in white women whocompleted the study and had plasma samples available (n = 685).
Main outcome measure Pre-eclampsia.
Results Compared with Hp 2-1, Hp 1-1 (OR 0.59, 95% CI 0.30–1.16) and Hp 2-2 (OR 0.93, 95% CI 0.60–1.45) were notassociated with significantly decreased pre-eclampsia risk afteradjusting for treatment group and HbA1c at randomisation. Ourstudy was not powered to detect an interaction between Hpphenotype and treatment response; however, our preliminaryanalysis sugge sts that vitamins C and E did not prevent pre-eclampsia in women of any Hp phenotype (Hp 1-1, OR 0.77, 95%CI 0.22–2.71; Hp 2-1, OR 0.81, 95% CI 0.46–1.43; Hp 2-2, 0.67,95% CI 0.34–1.33), after adjusting for HbA1c at randomisation.
Conclusions The Hp phenotype did not significantly affect pre-eclampsia risk in women with type-1 diabetes.
Resumo:
This work describes the development of spray dried polymer coated liposomes composed of soy phosphatidylcholine (SPC) and phospholipid dimyristoyl phosphatidylglycerol (DMPG) coated with alginate, chitosan or trimethyl chitosan (TMC), that are able to penetrate through the nasal mucosa and offer enhanced penetration over uncoated liposomes when delivered as a dry powder. All the liposome formulations, loaded with BSA as model antigen, were spray-dried to obtain powder size and liposome size in a suitable range for nasal delivery. Although coating resulted in some reduction in encapsulation efficiency, levels were still maintained between 60% and 69% and the structural integrity of the entrapped protein and its release characteristics were maintained. Coating with TMC gave the best product characteristics in terms of entrapment efficiency, glass transition (Tg) and mucoadhesive strength, while penetration of nasal mucosal tissue was very encouraging when these liposomes were administered as dispersions although improved results were observed for the dry powders
Resumo:
Poly(vinyl alcohol)-tetrahydroxyborate (PVA-THB) hydrogels are dilatant formulations with potential for topical wound management. To support this contention, the physical properties, rheological behaviour and component release of candidate formulations were investigated. Oscillatory rheometry and texture profile analysis were used at room temperature and 37 °C. Results showed that it was possible to control the rheological and textural properties by altering component concentration and modifying the type of PVA polymer used. Hydrogels made using PVA grades with higher degrees of hydrolysis displayed favourable characteristics from a wound healing perspective. In vitro release of borate and PVA were assessed in order to evaluate potential clinical dosing of free species originating from the hydrogel structure. Component diffusion was influenced by both concentration and molecular weight, where relevant, with up to 5% free PVA cumulative release observed after 30 min. The results of this study demonstrated the importance of poly(vinyl alcohol) selection for ensuring appropriate gel formation in PVA-THB hydrogels. The benefits of higher degrees of hydrolysis, in particular, included lower excipient release and reduced bioadhesion. The unique physical characteristics of these hydrogels make them an appealing delivery vehicle for chronic and acute wound management purposes.
Resumo:
Colon-residing bacteria, such as vancomycin-resistant Enterococcus faecalis and Bacteroides fragilis, can cause a range of serious clinical infections. Photodynamic antimicrobial chemotherapy (PACT) may be a novel treatment option for these multidrug resistant organisms. The aim of this study was to formulate a Eudragit®-based drug delivery system, via hot melt extrusion (HME), for targeting colonic release of photosensitizer. The susceptibility of E. faecalis and B. fragilis to PACT mediated by methylene blue (MB), meso-tetra(N-methyl-4-pyridyl)porphine tetra-tosylate (TMP), or 5-aminolevulinic acid hexyl-ester (h-ALA) was determined, with tetrachlorodecaoxide (TCDO), an oxygen-releasing compound, added in some studies. Results show that, for MB, an average of 30% of the total drug load was released over a 6-h period. For TMP and h-ALA, these values were 50% and 16% respectively. No drug was released in the acidic media. Levels of E. faecalis and B. fragilis were reduced by up to 4.67 and 7.73 logs, respectively, on PACT exposure under anaerobic conditions, with increased kill associated with TCDO. With these formulations, photosensitizer release could potentially be targeted to the colon, and colon-residing pathogens killed by PACT. TCDO could be used in vivo to generate oxygen, which could significantly impact on the success of PACT in the clinic.