906 resultados para DYNAMICS SIMULATIONS
Resumo:
Cation-π interactions are important forces in molecular recognition by biological receptors, enzyme catalysis, and crystal engineering. We have harnessed these interactions in designing molecular systems with circular arrangement of benzene units that are capable of acting as ionophores and models for biological receptors. [n]Collarenes are promising candidates with high selectivity for a specific cation, depending on n, because of their structural rigidity and well-defined cavity size. The interaction energies of [n]collarenes with cations have been evaluated by using ab initio calculations. The selectivity of these [n]collarenes in aqueous solution was revealed by using statistical perturbation theory in conjunction with Monte Carlo and molecular dynamics simulations. It has been observed that in [n]collarenes the ratio of the interaction energies of a cation with it and the cation with the basic building unit (benzene) can be correlated to its ion selectivity. We find that collarenes are excellent and efficient ionophores that bind cations through cation-π interactions. [6]Collarene is found to be a selective host for Li+ and Mg2+, [8]collarene for K+ and Sr2+, and [10]collarene for Cs+ and Ba2+. This finding indicates that [10]collarene and [8]collarene could be used for effective separation of highly radioactive isotopes, 137Cs and 90Sr, which are major constituents of nuclear wastes. More interestingly, collarenes of larger cavity size can be useful in capturing organic cations. [12]Collarene exhibits a pronounced affinity for tetramethylammonium cation and acetylcholine, which implies that it could serve as a model for acetylcholinestrase. Thus, collarenes can prove to be novel and effective ionophores/model-receptors capable of heralding a new direction in molecular recognition and host-guest chemistry.
Resumo:
Advances in computer power, methodology, and empirical force fields now allow routine “stable” nanosecond-length molecular dynamics simulations of DNA in water. The accurate representation of environmental influences on structure remains a major, unresolved issue. In contrast to simulations of A-DNA in water (where an A-DNA to B-DNA transition is observed) and in pure ethanol (where disruption of the structure is observed), A-DNA in ≈85% ethanol solution remains in a canonical A-DNA geometry as expected. The stabilization of A-DNA by ethanol is likely due to disruption of the spine of hydration in the minor groove and the presence of ion-mediated interhelical bonds and extensive hydration across the major groove.
Resumo:
Under certain conditions, the prion protein (PrP) undergoes a conformational change from the normal cellular isoform, PrPC, to PrPSc, an infectious isoform capable of causing neurodegenerative diseases in many mammals. Conversion can be triggered by low pH, and in vivo this appears to take place in an endocytic pathway and/or caveolae-like domains. It has thus far been impossible to characterize the conformational change at high resolution by experimental methods. Therefore, to investigate the effect of acidic pH on PrP conformation, we have performed 10-ns molecular dynamics simulations of PrPC in water at neutral and low pH. The core of the protein is well maintained at neutral pH. At low pH, however, the protein is more dynamic, and the sheet-like structure increases both by lengthening of the native β-sheet and by addition of a portion of the N terminus to widen the sheet by another two strands. The side chain of Met-129, a polymorphic codon in humans associated with variant Creutzfeldt–Jakob disease, pulls the N terminus into the sheet. Neutralization of Asp-178 at low pH removes interactions that inhibit conversion, which is consistent with the Asp-178–Asn mutation causing human prion diseases.
Resumo:
Previous experimental and theoretical studies have produced high-resolution descriptions of the native and folding transition states of chymotrypsin inhibitor 2 (CI2). In similar fashion, here we use a combination of NMR experiments and molecular dynamics simulations to examine the conformations populated by CI2 in the denatured state. The denatured state is highly unfolded, but there is some residual native helical structure along with hydrophobic clustering in the center of the chain. The lack of persistent nonnative structure in the denatured state reduces barriers that must be overcome, leading to fast folding through a nucleation–condensation mechanism. With the characterization of the denatured state, we have now completed our description of the folding/unfolding pathway of CI2 at atomic resolution.
Resumo:
The structural changes accompanying stretch-induced early unfolding events were investigated for the four type III fibronectin (FN-III) modules, FN-III7, FN-III8, FN-III9, and FN-III10 by using steered molecular dynamics. Simulations revealed that two main energy barriers, I and II, have to be overcome to initiate unraveling of FN-III's tertiary structure. In crossing the first barrier, the two opposing β-sheets of FN-III are rotated against each other such that the β-strands of both β-sheets align parallel to the force vector (aligned state). All further events in the unfolding pathway proceed from this intermediate state. A second energy barrier has to be overcome to break the first major cluster of hydrogen bonds between adjacent β-strands. Simulations revealed that the height of barrier I varied significantly among the four modules studied, being largest for FN-III7 and lowest for FN-III10, whereas the height of barrier II showed little variation. Key residues affecting the mechanical stability of FN-III modules were identified. These results suggest that FN-III modules can be prestretched into an intermediate state with only minor changes to their tertiary structures. FN-III10, for example, extends 12 Å from the native “twisted” to the intermediate aligned state, and an additional 10 Å from the aligned state to further unfolding where the first β-strand is peeled away. The implications of the existence of intermediate states regarding the elasticity of fibrillar fibers and the stretch-induced exposure of cryptic sites are discussed.
Resumo:
The Ras family of GTPases is a collection of molecular switches that link receptors on the plasma membrane to signaling pathways that regulate cell proliferation and differentiation. The accessory GTPase-activating proteins (GAPs) negatively regulate the cell signaling by increasing the slow intrinsic GTP to GDP hydrolysis rate of Ras. Mutants of Ras are found in 25–30% of human tumors. The most dramatic property of these mutants is their insensitivity to the negative regulatory action of GAPs. All known oncogenic mutants of Ras map to a small subset of amino acids. Gln-61 is particularly important because virtually all mutations of this residue eliminate sensitivity to GAPs. Despite its obvious importance for carcinogenesis, the role of Gln-61 in the GAP-stimulated GTPase activity of Ras has remained a mystery. Our molecular dynamics simulations of the p21ras–p120GAP–GTP complex suggest that the local structure around the catalytic region can be different from that revealed by the x-ray crystal structure. We find that the carbonyl oxygen on the backbone of the arginine finger supplied in trans by p120GAP (Arg-789) interacts with a water molecule in the active site that is forming a bridge between the NH2 group of the Gln-61 and the γ-phosphate of GTP. Thus, Arg-789 may play a dual role in generating the nucleophile as well as stabilizing the transition state for P—O bond cleavage.
Resumo:
Neutron scattering experiments are used to determine scattering profiles for aqueous solutions of hydrophobic and hydrophilic amino acid analogs. Solutions of hydrophobic solutes show a shift in the main diffraction peak to smaller angle as compared with pure water, whereas solutions of hydrophilic solutes do not. The same difference for solutions of hydrophobic and hydrophilic side chains is also predicted by molecular dynamics simulations. The neutron scattering curves of aqueous solutions of hydrophobic amino acids at room temperature are qualitatively similar to differences between the liquid molecular structure functions measured for ambient and supercooled water. The nonpolar solute-induced expansion of water structure reported here is also complementary to recent neutron experiments where compression of aqueous solvent structure has been observed at high salt concentration.
Resumo:
The process of creating an atomically defined and robust metallic tip is described and quantified using measurements of contact conductance between gold electrodes and numerical simulations. Our experiments show how the same conductance behavior can be obtained for hundreds of cycles of formation and rupture of the nanocontact by limiting the indentation depth between the two electrodes up to a conductance value of approximately 5G0 in the case of gold. This phenomenon is rationalized using molecular dynamics simulations together with density functional theory transport calculations which show how, after repeated indentations (mechanical annealing), the two metallic electrodes are shaped into tips of reproducible structure. These results provide a crucial insight into fundamental aspects relevant to nanotribology or scanning probe microscopies.
Resumo:
The dynamic deformation upon stretching of Ni nanowires as those formed with mechanically controllable break junctions or with a scanning tunneling microscope is studied both experimentally and theoretically. Molecular dynamics simulations of the breaking process are performed. In addition, and in order to compare with experiments, we also compute the transport properties in the last stages before failure using the first-principles implementation of Landauer's formalism included in our transport package ALACANT.
Resumo:
We have studied experimentally jump-to-contact (JC) and jump-out-of-contact (JOC) phenomena in gold electrodes. JC can be observed at first contact when two metals approach each other, while JOC occurs in the last contact before breaking. When the indentation depth between the electrodes is limited to a certain value of conductance, a highly reproducible behaviour in the evolution of the conductance can be obtained for hundreds of cycles of formation and rupture. Molecular dynamics simulations of this process show how the two metallic electrodes are shaped into tips of a well-defined crystallographic structure formed through a mechanical annealing mechanism. We report a detailed analysis of the atomic configurations obtained before contact and rupture of these stable structures and obtained their conductance using first-principles quantum transport calculations. These results help us understand the values of conductance obtained experimentally in the JC and JOC phenomena and improve our understanding of atomic-sized contacts and the evolution of their structural characteristics.
Resumo:
Les réactions de transfert de proton se retrouvent abondamment dans la nature et sont des processus cruciaux dans plusieurs réactions chimiques et biologiques, qui se produisent souvent en milieu aqueux. Les mécanismes régissant ces échanges de protons sont complexes et encore mal compris, suscitant un intérêt des chercheurs en vue d’une meilleure compréhension fondamentale du processus de transfert. Le présent manuscrit présente une étude mécanistique portant sur une réaction de transfert de proton entre un acide (phénol fonctionnalisé) et une base (ion carboxylate) en phase aqueuse. Les résultats obtenus sont basés sur un grand nombre de simulations de dynamique moléculaire ab-initio réalisées pour des systèmes de type « donneur-pont-accepteur », où le pont se trouve à être une unique molécule d’eau, permettant ainsi l’élaboration d’un modèle cinétique détaillé pour le système étudié. La voie de transfert principalement observée est un processus ultra-rapide (moins d’une picoseconde) passant par la formation d’une structure de type « Eigen » (H9O4+) pour la molécule d’eau pontante, menant directement à la formation des produits. Une seconde structure de la molécule d’eau pontante est également observée, soit une configuration de type « Zündel » (H5O2+) impliquant l’accepteur de proton (l’ion carboxylate) qui semble agir comme un cul-de-sac pour la réaction de transfert de proton.
Resumo:
Les réactions de transfert de proton se retrouvent abondamment dans la nature et sont des processus cruciaux dans plusieurs réactions chimiques et biologiques, qui se produisent souvent en milieu aqueux. Les mécanismes régissant ces échanges de protons sont complexes et encore mal compris, suscitant un intérêt des chercheurs en vue d’une meilleure compréhension fondamentale du processus de transfert. Le présent manuscrit présente une étude mécanistique portant sur une réaction de transfert de proton entre un acide (phénol fonctionnalisé) et une base (ion carboxylate) en phase aqueuse. Les résultats obtenus sont basés sur un grand nombre de simulations de dynamique moléculaire ab-initio réalisées pour des systèmes de type « donneur-pont-accepteur », où le pont se trouve à être une unique molécule d’eau, permettant ainsi l’élaboration d’un modèle cinétique détaillé pour le système étudié. La voie de transfert principalement observée est un processus ultra-rapide (moins d’une picoseconde) passant par la formation d’une structure de type « Eigen » (H9O4+) pour la molécule d’eau pontante, menant directement à la formation des produits. Une seconde structure de la molécule d’eau pontante est également observée, soit une configuration de type « Zündel » (H5O2+) impliquant l’accepteur de proton (l’ion carboxylate) qui semble agir comme un cul-de-sac pour la réaction de transfert de proton.
Resumo:
We present here a tractable theory of transport of simple fluids in cylindrical nanopores, which is applicable over a wide range of densities and pore sizes. In the Henry law low-density region the theory considers the trajectories of molecules oscillating between diffuse wall collisions, while at higher densities beyond this region the contribution from viscous flow becomes significant and is included through our recent approach utilizing a local average density model. The model is validated by means of equilibrium as well nonequilibrium molecular dynamics simulations of supercritical methane transport in cylindrical silica pores over a wide range of temperature, density, and pore size. The model for the Henry law region is exact and found to yield an excellent match with simulations at all conditions, including the single-file region of very small pore size where it is shown to provide the density-independent collective transport coefficient. It is also shown that in the absence of dispersive interactions the model reduces to the classical Knudsen result, but in the presence of such interactions the latter model drastically overpredicts the transport coefficient. For larger micropores beyond the single-file region the transport coefficient is reduced at high density because of intermolecular interactions and hindrance to particle crossings leading to a large decrease in surface slip that is not well represented by the model. However, for mesopores the transport coefficient increases monotonically with density, over the range studied, and is very well predicted by the theory, though at very high density the contribution from surface slip is slightly overpredicted. It is also seen that the concept of activated diffusion, commonly associated with diffusion in small pores, is fundamentally invalid for smooth pores, and the apparent activation energy is not simply related to the minimum pore potential or the adsorption energy as generally assumed. (C) 2004 American Institute of Physics.
Resumo:
We examine the transport of methane in microporous carbon by performing equilibrium and nonequilibrium molecular dynamics simulations over a range of pore sizes, densities, and temperatures. We interpret these simulation results using two models of the transport process. At low densities, we consider a molecular flow model, in which intermolecular interactions are neglected, and find excellent agreement between transport diffusion coefficients determined from simulation, and those predicted by the model. Simulation results indicate that the model can be applied up to fluid densities of the order to 0.1-1 nm(-3). Above these densities, we consider a slip flow model, combining hydrodynamic theory with a slip condition at the solid-fluid interface. As the diffusion coefficient at low densities can be accurately determined by the molecular flow model, we also consider a model where the slip condition is supplied by the molecular flow model. We find that both density-dependent models provide a useful means of estimating the transport coefficient that compares well with simulation. (C) 2004 American Institute of Physics.
Resumo:
We present a tractable theory of transport of simple fluids in cylindrical nanopores, considering trajectories of molecules between diffuse wall collisions at low-density, and including viscous flow contributions at higher densities. The model is validated through molecular dynamics simulations of supercritical methane transport, over a wide range of conditions. We find excellent agreement between model and simulation at low to medium densities. However, at high densities the model tends to over-predict the transport behaviour, due to a large decrease in surface slip that is not well represented by the model. It is also seen that the concept of activated diffusion, commonly associated with diffusion in small pores, is fundamentally invalid for smooth pores.