737 resultados para DÍAZ DEL CASTILLO, BERNAL, 1496-1584


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hasta fecha relativamente reciente, el cálculo estructural de placas con geometría y condiciones de borde arbitrarias ha constituido un problema complejo, frecuentemente inabordable sin el recurso de importantes y drásticas simplificaciones. Los métodos entonces existentes, -analíticos, semianalíticos (desarrollos en series) o numéricos (diferencias finitas)- eran incapaces o exigían un elevado grado de laboriosidad en su resolución. Con la aparición del método de los elementos finitos (l), (MEF), la situación se modificó de un modo considerable, al existir la posibilidad de un tratamiento unificado dentro de la teoría general del análisis matricial de estructuras -del cálculo de placas- con un mínimo de aproximaciones. No obstante se comprobó que la versión en movimientos del MEF encontraba mayores dificultades en su aplicación a problemas de la clase C1 –como son los de la flexión de placas delgadas- en comparación con los problemas C0- correspondientes a casos de elasticidad (tensión y deformación plana, por ejemplo).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two different methods of analysis of plate bending, FEM and BM are discussed in this paper. The plate behaviour is assumed to be represented by using the linear thin plate theory where the Poisson-Kirchoff assumption holds. The BM based in a weighted mean square error technique produced good results for the problem of plate bending. The computational effort demanded in the BM is smaller than the one needed in a FEM analysis for the same level of accuracy. The general application of the FEM cannot be matched by the BM. Particularly, different types of geometry (plates of arbitrary geometry) need a similar but not identical treatment in the BM. However, this loss of generality is counterbalanced by the computational efficiency gained in the BM in the solution achievement

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se hace una pequeña introducción y después un estudio sobre las posibilidades y limitaciones en análisis de placas delgadas de elementos simples polinómicos de clase C.1. Se expone una familia jerárquica de dichos elementos, que se aplica a varios casos particulares. En base a estos se deducen algunas conclusiones, especialmente en lo que se refiere a eficacia computacional. Al final se proponen trabajos a realizar a partir de los datos existentes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possibilities and limitations of high order hyperelements in plate bending analysis are discussed. Explicit shape functions for some types of triangular elements are given. These elements are applied to simple cases to assess their computational efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After a short introduction the possibilities and limitations of polynomial simple elements with C1 continuity are discussed with reference to plate bending analysis. A family of this kind of elements is presented.. These elements are applied to simple cases in order to assess their computational efficiency. Finally some conclusions are shown, and future research is also proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Huella de la imagen recortada

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a simplified system of a growing colony of cells described as a free boundary problem. The system consists of two hyperbolic equations of first order coupled to an ODE to describe the behavior of the boundary. The system for cell populations includes non-local terms of integral type in the coefficients. By introducing a comparison with solutions of an ODE's system, we show that there exists a unique homogeneous steady state which is globally asymptotically stable for a range of parameters under the assumption of radially symmetric initial data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a mathematical model for the spatio-temporal evolution of two biological species in a competitive situation. Besides diffusing, both species move toward higher concentrations of a chemical substance which is produced by themselves. The resulting system consists of two parabolic equations with Lotka–Volterra-type kinetic terms and chemotactic cross-diffusion, along with an elliptic equation describing the behavior of the chemical. We study the question in how far the phenomenon of competitive exclusion occurs in such a context. We identify parameter regimes for which indeed one of the species dies out asymptotically, whereas the other reaches its carrying capacity in the large time limit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider a system of three parabolic equations modeling the behavior of two biological species moving attracted by a chemical factor. The chemical substance verifies a parabolic equation with slow diffusion. The system contains second order terms in the first two equations modeling the chemotactic effects. We apply an iterative method to obtain the global existence of solutions using that the total mass of the biological species is conserved. The stability of the homogeneous steady states is studied by using an energy method. A final example is presented to illustrate the theoretical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study a system of partial differential equations describing the evolution of a population under chemotactic effects with non-local reaction terms. We consider an external application of chemoattractant in the system and study the cases of one and two populations in competition. By introducing global competitive/cooperative factors in terms of the total mass of the populations, weobtain, forarangeofparameters, thatanysolutionwithpositive and bounded initial data converges to a spatially homogeneous state with positive components. The proofs rely on the maximum principle for spatially homogeneous sub- and super-solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a parabolic–elliptic chemotactic system describing the evolution of a population’s density “u” and a chemoattractant’s concentration “v”. The system considers a non-constant chemotactic sensitivity given by “χ(N−u)”, for N≥0, and a source term of logistic type “λu(1−u)”. The existence of global bounded classical solutions is proved for any χ>0, N≥0 and λ≥0. By using a comparison argument we analyze the stability of the constant steady state u=1, v=1, for a range of parameters. – For N>1 and Nλ>2χ, any positive and bounded solution converges to the steady state. – For N≤1 the steady state is locally asymptotically stable and for χN<λ, the steady state is globally asymptotically stable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study non-negative radially symmetric solutions of a parabolic-elliptic Keller-Segel system. The system describes the chemotactic movement of cells under the additional circumstance that an external application of a chemo attractant at a distinguished point is introduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a simple mathematical model of tumor growth based on cancer stem cells. The model consists of four hyperbolic equations of first order to describe the evolution of different subpopulations of cells: cancer stem cells, progenitor cells, differentiated cells and dead cells. A fifth equation is introduced to model the evolution of the moving boundary. The system includes non-local terms of integral type in the coefficients. Under some restrictions in the parameters we show that there exists a unique homogeneous steady state which is stable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider a general system of reaction-diffusion equations and introduce a comparison method to obtain qualitative properties of its solutions. The comparison method is applied to study the stability of homogeneous steady states and the asymptotic behavior of the solutions of different systems with a chemotactic term. The theoretical results obtained are slightly modified to be applied to the problems where the systems are coupled in the differentiated terms and / or contain nonlocal terms. We obtain results concerning the global stability of the steady states by comparison with solutions of Ordinary Differential Equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El problema de la optimización en el diseño de presas - bóveda, planteado en toda su generalidad, corresponde a la definición de este diseño, es decir, de los siguientes parámetros dela presa bóveda: 1) Forma. 2) Altura. 3) Localización. 4) Propiedades. 5) Procedimiento de construcción. 6) Tratamiento de la cimentación y juntas con el terreno. 7) Localización y tipo de obras secundarias (aliviadero, galerías, etc.). 8) Uso de armado o pretensado de modo que se minimice una cierta función mérito,que exprese el coste de la estructura en función de estos parámetros.