891 resultados para Computer aided software engineering
Resumo:
Within the development of motor vehicles, crash safety (e.g. occupant protection, pedestrian protection, low speed damageability), is one of the most important attributes. In order to be able to fulfill the increased requirements in the framework of shorter cycle times and rising pressure to reduce costs, car manufacturers keep intensifying the use of virtual development tools such as those in the domain of Computer Aided Engineering (CAE). For crash simulations, the explicit finite element method (FEM) is applied. The accuracy of the simulation process is highly dependent on the accuracy of the simulation model, including the midplane mesh. One of the roughest approximations typically made is the actual part thickness which, in reality, can vary locally. However, almost always a constant thickness value is defined throughout the entire part due to complexity reasons. On the other hand, for precise fracture analysis within FEM, the correct thickness consideration is one key enabler. Thus, availability of per element thickness information, which does not exist explicitly in the FEM model, can significantly contribute to an improved crash simulation quality, especially regarding fracture prediction. Even though the thickness is not explicitly available from the FEM model, it can be inferred from the original CAD geometric model through geometric calculations. This paper proposes and compares two thickness estimation algorithms based on ray tracing and nearest neighbour 3D range searches. A systematic quantitative analysis of the accuracy of both algorithms is presented, as well as a thorough identification of particular geometric arrangements under which their accuracy can be compared. These results enable the identification of each technique’s weaknesses and hint towards a new, integrated, approach to the problem that linearly combines the estimates produced by each algorithm.
Resumo:
Over the last decade, software architecture emerged as a critical issue in Software Engineering. This encompassed a shift from traditional programming towards software development based on the deployment and assembly of independent components. The specification of both the overall systems structure and the interaction patterns between their components became a major concern for the working developer. Although a number of formalisms to express behaviour and to supply the indispensable calculational power to reason about designs, are available, the task of deriving architectural designs on top of popular component platforms has remained largely informal. This paper introduces a systematic approach to derive, from CCS behavioural specifications the corresponding architectural skeletons in the Microsoft .Net framework, in the form of executable C and Cω code. The prototyping process is fully supported by a specific tool developed in Haskell
Resumo:
In this paper, we present a method for estimating local thickness distribution in nite element models, applied to injection molded and cast engineering parts. This method features considerable improved performance compared to two previously proposed approaches, and has been validated against thickness measured by di erent human operators. We also demonstrate that the use of this method for assigning a distribution of local thickness in FEM crash simulations results in a much more accurate prediction of the real part performance, thus increasing the bene ts of computer simulations in engineering design by enabling zero-prototyping and thus reducing product development costs. The simulation results have been compared to experimental tests, evidencing the advantage of the proposed method. Thus, the proposed approach to consider local thickness distribution in FEM crash simulations has high potential on the product development process of complex and highly demanding injection molded and casted parts and is currently being used by Ford Motor Company.
Resumo:
This paper presents the development of a solar photovoltaic (PV) model based on PSCAD/EMTDC - Power System Computer Aided Design – including a mathematical model study. An additional algorithm has been implemented in MATLAB software in order to calculate several parameters required by the PSCAD developed model. All the simulation study has been performed in PSCAD/MATLAB software simulation tool. A real data base concerning irradiance, cell temperature and PV power generation was used in order to support the evaluation of the implemented PV model.
Resumo:
Although we have many electric devices at home, there are just few systems to evaluate, monitor and control them. Sometimes users go out and leave their electric devices turned on what can cause energy wasting and dangerous situations. Therefore most of the users may want to know the using states of their electrical appliances through their mobile devices in a pervasive way. In this paper, we propose an Intelligent Supervisory Control System to evaluate, monitor and control the use of electric devices in home, from outside. Because of the transferring data to evaluate, monitor and control user's location and state of home (ex. nobody at home) may be opened to attacks leading to dangerous situations. In our model we include a location privacy module and encryption module to provide security to user location and data. Intelligent Supervising Control System gives to the user the ability to manage electricity loads by means of a multi-agent system involving evaluation, monitoring, control and energy resource agents.
Resumo:
This chapter presents some of the issues with holonic manufacturing systems. It starts by presenting the current manufacturing scenario and trends and then provides some background information on the holonic concept and its application to manufacturing. The current limitations and future trends of manufacturing suggest more autonomous and distributed organisations for manufacturing systems; holonic manufacturing systems are proposed as a way to achieve such autonomy and decentralisation. After a brief literature survey a specific research work is presented to handle scheduling in holonic manufacturing systems. This work is based on task and resource holons that cooperate with each other based on a variant of the contract net protocol that allow the propagation of constraints between operations in the execution plan. The chapter ends by presenting some challenges and future opportunities of research.
Resumo:
Liver steatosis is a common disease usually associated with social and genetic factors. Early detection and quantification is important since it can evolve to cirrhosis. Steatosis is usually a diffuse liver disease, since it is globally affected. However, steatosis can also be focal affecting only some foci difficult to discriminate. In both cases, steatosis is detected by laboratorial analysis and visual inspection of ultrasound images of the hepatic parenchyma. Liver biopsy is the most accurate diagnostic method but its invasive nature suggest the use of other non-invasive methods, while visual inspection of the ultrasound images is subjective and prone to error. In this paper a new Computer Aided Diagnosis (CAD) system for steatosis classification and analysis is presented, where the Bayes Factor, obatined from objective intensity and textural features extracted from US images of the liver, is computed in a local or global basis. The main goal is to provide the physician with an application to make it faster and accurate the diagnosis and quantification of steatosis, namely in a screening approach. The results showed an overall accuracy of 93.54% with a sensibility of 95.83% and 85.71% for normal and steatosis class, respectively. The proposed CAD system seemed suitable as a graphical display for steatosis classification and comparison with some of the most recent works in the literature is also presented.
Resumo:
PURPOSE: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonographers are required to accurately interpret the liver ultrasound images, lack of the same will result in interobserver variability. For more objective interpretation, high accuracy, and quick second opinions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is to develop one such CAD technique for accurate classification of normal livers and abnormal livers affected by FLD. METHODS: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel combination of significant features based on the texture, wavelet transform, and higher order spectra of the liver ultrasound images in various supervised learning-based classifiers in order to determine parameters that classify normal and FLD-affected abnormal livers. RESULTS: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the decision tree classifier. CONCLUSIONS: This high accuracy added to the completely automated classification procedure makes the authors' proposed technique highly suitable for clinical deployment and usage.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.
Resumo:
The recent trends of chip architectures with higher number of heterogeneous cores, and non-uniform memory/non-coherent caches, brings renewed attention to the use of Software Transactional Memory (STM) as a fundamental building block for developing parallel applications. Nevertheless, although STM promises to ease concurrent and parallel software development, it relies on the possibility of aborting conflicting transactions to maintain data consistency, which impacts on the responsiveness and timing guarantees required by embedded real-time systems. In these systems, contention delays must be (efficiently) limited so that the response times of tasks executing transactions are upper-bounded and task sets can be feasibly scheduled. In this paper we assess the use of STM in the development of embedded real-time software, defending that the amount of contention can be reduced if read-only transactions access recent consistent data snapshots, progressing in a wait-free manner. We show how the required number of versions of a shared object can be calculated for a set of tasks. We also outline an algorithm to manage conflicts between update transactions that prevents starvation.
Resumo:
Dissertation presented to obtain a Masters degree in Computer Science
Resumo:
This paper reports on the creation of an interface for 3D virtual environments, computer-aided design applications or computer games. Standard computer interfaces are bound to 2D surfaces, e.g., computer mouses, keyboards, touch pads or touch screens. The Smart Object is intended to provide the user with a 3D interface by using sensors that register movement (inertial measurement unit), touch (touch screen) and voice (microphone). The design and development process as well as the tests and results are presented in this paper. The Smart Object was developed by a team of four third-year engineering students from diverse scientific backgrounds and nationalities during one semester.
Resumo:
Thesis to obtain the Master of Science Degree in Computer Science and Engineering
Resumo:
Multi-agent architectures are well suited for complex inherently distributed problem solving domains. From the many challenging aspects that arise within this framework, a crucial one emerges: how to incorporate dynamic and conflicting agent beliefs? While the belief revision activity in a single agent scenario is concentrated on incorporating new information while preserving consistency, in a multi-agent system it also has to deal with possible conflicts between the agents perspectives. To provide an adequate framework, each agent, built as a combination of an assumption based belief revision system and a cooperation layer, was enriched with additional features: a distributed search control mechanism allowing dynamic context management, and a set of different distributed consistency methodologies. As a result, a Distributed Belief Revision Testbed (DiBeRT) was developed. This paper is a preliminary report presenting some of DiBeRT contributions: a concise representation of external beliefs; a simple and innovative methodology to achieve distributed context management; and a reduced inter-agent data exchange format.
Resumo:
Measurements in civil engineering load tests usually require considerable time and complex procedures. Therefore, measurements are usually constrained by the number of sensors resulting in a restricted monitored area. Image processing analysis is an alternative way that enables the measurement of the complete area of interest with a simple and effective setup. In this article photo sequences taken during load displacement tests were captured by a digital camera and processed with image correlation algorithms. Three different image processing algorithms were used with real images taken from tests using specimens of PVC and Plexiglas. The data obtained from the image processing algorithms were also compared with the data from physical sensors. A complete displacement and strain map were obtained. Results show that the accuracy of the measurements obtained by photogrammetry is equivalent to that from the physical sensors but with much less equipment and fewer setup requirements. © 2015Computer-Aided Civil and Infrastructure Engineering.